Abstract

Ultrashort pulses, of the same time duration as the pump pulse, have been obtained with a traveling-wave parametric generator employing a temperature-tuned lithium triborate crystal in noncritical phase matching. Starting from a 190-fs pulse at 0.6 μm generated by a dye laser, we achieved an overall conversion efficiency of 10-15% in the tuning range 0.85–0.97 μm (and the corresponding range of 1.6–2.1 μm) with a pump energy of only 30 μJ. The easy operation in the femtosecond regime and the minimal energy requirements that we found are due to the small group-velocity mismatch of lithium triborate at this pump wavelength and to the absence of walk-off.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
    [CrossRef]
  2. A. H. Rung, Appl. Phys. Lett. 25, 653 (1974).
    [CrossRef]
  3. A. Lauberau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
    [CrossRef]
  4. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, J. Opt. Soc. Am. B 6, 616 (1989).
    [CrossRef]
  5. S. Lin, B. Wu, F. Xie, C. Chen, Appl. Phys. Lett. 59, 1541 (1991).
    [CrossRef]
  6. LBO and BBO data sheets published by Fujan Castech Crystals, Inc., Fujan, China (1991)
  7. J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
    [CrossRef]
  8. W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
    [CrossRef]
  9. R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
    [CrossRef]
  10. W. Joosen, H. J. Bakker, L. D. Noordam, H. G. Muller, H. B. van Linden, J. Opt. Soc. Am. B 8, 2087 (1991); W. Joosen, P. Agostini, G. Petite, J. P. Chambaret, A. Antonetti, Opt. Lett. 17, 133 (1992).
    [CrossRef] [PubMed]
  11. G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

1992 (1)

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

1991 (3)

1990 (1)

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

1989 (1)

1978 (1)

A. Lauberau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

1974 (1)

A. H. Rung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

1968 (1)

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Akhmanov, S. A.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Akmanov, A. G.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Bakker, H. J.

Banfi, G. P.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Chen, C.

S. Lin, B. Wu, F. Xie, C. Chen, Appl. Phys. Lett. 59, 1541 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, J. Opt. Soc. Am. B 6, 616 (1989).
[CrossRef]

Danielius, R.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Di Trapani, P.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Foggi, P.

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Huang, J. Y.

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

Jiang, A.

Joosen, W.

Kaiser, W.

A. Lauberau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Khokhlov, R. V.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Kovrigin, A. I.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Lauberau, A.

A. Lauberau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Li, R.

Lin, S.

Muller, H. G.

Noordam, L. D.

Pelouch, W. S.

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

Piskarskas, A.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Piskarskas, A. S.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Podenas, D.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

Righini, R.

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Rung, A. H.

A. H. Rung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

Sa'nta, I.

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Shen, Y. R.

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

Sukhorukov, A. P.

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

Tang, C. L.

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

Ukachi, T.

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

van Linden, H. B.

Varanavicius, A.

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

Wachman, E. S.

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

Wu, B.

S. Lin, B. Wu, F. Xie, C. Chen, Appl. Phys. Lett. 59, 1541 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, J. Opt. Soc. Am. B 6, 616 (1989).
[CrossRef]

Wu, Y.

Xie, F.

S. Lin, B. Wu, F. Xie, C. Chen, Appl. Phys. Lett. 59, 1541 (1991).
[CrossRef]

You, G.

Appl. Phys. Lett. (4)

A. H. Rung, Appl. Phys. Lett. 25, 653 (1974).
[CrossRef]

S. Lin, B. Wu, F. Xie, C. Chen, Appl. Phys. Lett. 59, 1541 (1991).
[CrossRef]

J. Y. Huang, Y. R. Shen, C. Chen, B. Wu, Appl. Phys. Lett. 58, 1579 (1991).
[CrossRef]

W. S. Pelouch, T. Ukachi, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 57, 11 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. G. Akmanov, S. A. Akhmanov, R. V. Khokhlov, A. I. Kovrigin, A. S. Piskarskas, A. P. Sukhorukov, IEEE J. Quantum Electron. QE-4, 828 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

R. Danielius, A. Piskarskas, D. Podenas, P. Di Trapani, A. Varanavicius, G. P. Banfi, Opt. Commun. 87, 23 (1992).
[CrossRef]

Rev. Mod. Phys. (1)

A. Lauberau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[CrossRef]

Other (2)

LBO and BBO data sheets published by Fujan Castech Crystals, Inc., Fujan, China (1991)

G. P. Banfi, R. Danielius, P. Di Trapani, P. Foggi, A. Piskarskas, R. Righini, I. Sa'nta, in Proceedings of the NATO-ASI School on Solid-State Lasers: New Developments and Applications, M. Iguscio, R. Wallenstein, eds. (Plenum, London, 1993), p. 163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Unfolded schematic of the TOPG. T's, telescopes; DM, dichroic mirror; BS, pump beam splitter. Shaded boxes 1, 2, and 3 are the 15-mm-long LBO crystals.

Fig. 2
Fig. 2

(a) Signal and idler wavelengths versus temperature: triangles, measured λs values; asterisks, λi values calculated from λs and λp. The solid curve is a fit to the data, (b) Total conversion efficiency η; (c) FWHM spectral width of the signal pulse (the dashed curves are only a guide for the eye). Total pump energy Ep = 30 μJ.

Fig. 3
Fig. 3

Spectral shapes of the signal pulse: (a) LBO both in the seeder and in the amplifier, (b) LBO in the seeder and type II phase-matching BBO in the amplifier.

Fig. 4
Fig. 4

Autocorrelation traces of (a) the pump and (b), (c) the signal pulse at λs = 0.9 μm, recorded at low and high conversions as indicated. Autocorrelation crystal is 0.5-mm-thick KDP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ p [ n z ( λ s ) / λ s + n z ( λ i ) / λ i ] n z ( 2 λ p ) = n y ( λ p ) n z ( 2 λ p ) .

Metrics