Abstract

Bend loss in monomode optical fibers exhibits oscillations as a function of wavelength due to a whispering gallery mode. The period of these oscillations has been used to measure the mean refractive index and thickness of the buffer material on two optical fibers in situ. The mean refractive index of the buffer material was measured to an accuracy of ±0.0025, which is sufficient to distinguish two nominally identical fibers with buffer surface cures of 86% and 96%.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  2. A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), Chap. 23, pp. 474–482.
    [CrossRef]
  3. C. Vassallo, J. Lightwave Technol. LT-3, 416 (1985).
    [CrossRef]
  4. A. J. Harris, P. F. Castle, J. Lightwave Technol. LT-4, 34 (1986).
    [CrossRef]
  5. I. Valiente, C. Vassallo, Electron. Lett. 25, 1544 (1989).
    [CrossRef]
  6. R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, Opt. Lett. 15, 947 (1990).
    [CrossRef] [PubMed]
  7. R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).
  8. S. M. James, Electron. Lett. 24, 1221 (1988).
    [CrossRef]
  9. S. R. Nagel, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminov, eds. (Academic, London, 1988), Chap. 4, pp. 182–185.
  10. E. A. Collins, J. Bares, F. W. Billmeyer, Experiments in Polymer Science (Wiley, New York, 1973), Chap. 5, pp. 84–89.
  11. P. Connes, Infrared Phys. 24, 69 (1984).
    [CrossRef]
  12. E. F. L. D'Souza, in Digest of Fifth International Conference on Plastics in Telecommunication (Institution of Electrical Engineers, London, 1989), pp. 10/1–10/8.
  13. W. B. Gardner, Bell Syst. Tech. J. 54, 457 (1975).
  14. P. J. Lemaire, Opt. Eng. 30, 780 (1991).
    [CrossRef]
  15. British Telecommunications plc specification CW1505G.

1991 (2)

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

P. J. Lemaire, Opt. Eng. 30, 780 (1991).
[CrossRef]

1990 (1)

1989 (1)

I. Valiente, C. Vassallo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

1988 (1)

S. M. James, Electron. Lett. 24, 1221 (1988).
[CrossRef]

1986 (1)

A. J. Harris, P. F. Castle, J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

1985 (1)

C. Vassallo, J. Lightwave Technol. LT-3, 416 (1985).
[CrossRef]

1984 (1)

P. Connes, Infrared Phys. 24, 69 (1984).
[CrossRef]

1976 (1)

1975 (1)

W. B. Gardner, Bell Syst. Tech. J. 54, 457 (1975).

Bares, J.

E. A. Collins, J. Bares, F. W. Billmeyer, Experiments in Polymer Science (Wiley, New York, 1973), Chap. 5, pp. 84–89.

Barton, J. S.

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Billmeyer, F. W.

E. A. Collins, J. Bares, F. W. Billmeyer, Experiments in Polymer Science (Wiley, New York, 1973), Chap. 5, pp. 84–89.

Castle, P. F.

A. J. Harris, P. F. Castle, J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

Collins, E. A.

E. A. Collins, J. Bares, F. W. Billmeyer, Experiments in Polymer Science (Wiley, New York, 1973), Chap. 5, pp. 84–89.

Connes, P.

P. Connes, Infrared Phys. 24, 69 (1984).
[CrossRef]

D'Souza, E. F. L.

E. F. L. D'Souza, in Digest of Fifth International Conference on Plastics in Telecommunication (Institution of Electrical Engineers, London, 1989), pp. 10/1–10/8.

Gardner, W. B.

W. B. Gardner, Bell Syst. Tech. J. 54, 457 (1975).

Harper, P. G.

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Harris, A. J.

A. J. Harris, P. F. Castle, J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

James, S. M.

S. M. James, Electron. Lett. 24, 1221 (1988).
[CrossRef]

Jones, J. D. C.

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

R. Morgan, J. S. Barton, P. G. Harper, J. D. C. Jones, Opt. Lett. 15, 947 (1990).
[CrossRef] [PubMed]

Lemaire, P. J.

P. J. Lemaire, Opt. Eng. 30, 780 (1991).
[CrossRef]

Love, J. D.

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), Chap. 23, pp. 474–482.
[CrossRef]

Marcuse, D.

Morgan, R.

Morgan, R. D.

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

Nagel, S. R.

S. R. Nagel, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminov, eds. (Academic, London, 1988), Chap. 4, pp. 182–185.

Synder, A. W.

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), Chap. 23, pp. 474–482.
[CrossRef]

Valiente, I.

I. Valiente, C. Vassallo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

Vassallo, C.

I. Valiente, C. Vassallo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

C. Vassallo, J. Lightwave Technol. LT-3, 416 (1985).
[CrossRef]

Bell Syst. Tech. J. (1)

W. B. Gardner, Bell Syst. Tech. J. 54, 457 (1975).

Electron. Lett. (2)

S. M. James, Electron. Lett. 24, 1221 (1988).
[CrossRef]

I. Valiente, C. Vassallo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

Infrared Phys. (1)

P. Connes, Infrared Phys. 24, 69 (1984).
[CrossRef]

J. Lightwave Technol. (2)

C. Vassallo, J. Lightwave Technol. LT-3, 416 (1985).
[CrossRef]

A. J. Harris, P. F. Castle, J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

P. J. Lemaire, Opt. Eng. 30, 780 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. D. Morgan, J. D. C. Jones, J. S. Barton, P. G. Harper, Proc. Soc. Photo-Opt. Instrum. Eng. 1580, 84 (1991).

Other (5)

British Telecommunications plc specification CW1505G.

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983), Chap. 23, pp. 474–482.
[CrossRef]

E. F. L. D'Souza, in Digest of Fifth International Conference on Plastics in Telecommunication (Institution of Electrical Engineers, London, 1989), pp. 10/1–10/8.

S. R. Nagel, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminov, eds. (Academic, London, 1988), Chap. 4, pp. 182–185.

E. A. Collins, J. Bares, F. W. Billmeyer, Experiments in Polymer Science (Wiley, New York, 1973), Chap. 5, pp. 84–89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of a polymerization reaction, where C, O, and H represent single carbon, oxygen, and hydrogen atoms, respectively, and the R's represent hydrocarbon groups.

Fig. 2
Fig. 2

Geometry of the WG mode interference model used to explain the bend-loss characteristic. L1 and L2 are the geometric paths of the WG mode within the cladding and the buffer, respectively, Z is the geometrical path of the core-guided mode, R is the radius of curvature of the bent fiber, rc is the distance to the caustic surface measured from the center of the core, and ΘWG is the arc angle of the WG mode. The section of the fiber on the inside of the bend is omitted for clarity.

Fig. 3
Fig. 3

Experimental apparatus for determining the wavelength dependence of fiber bend loss.

Fig. 4
Fig. 4

Typical spectral bend-loss characteristic for a bend radius of 5 mm, fiber A.

Fig. 5
Fig. 5

Typical plot of the bend-loss minima in Fig. 4 against 1/λmin, used to calculate χ and ϕ0: experimental points and least-squares fitted curve.

Fig. 6
Fig. 6

χ as a function of bend radius: experimental points and least-squares fitted curve.

Tables (1)

Tables Icon

Table 1 Results of Three Separate Determinations of nb and rb for Fibers A and Ba

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r c = R [ ( β λ / 2 π n cl ) 1 ] ,
ϕ = 2 π l λ β Z + Ψ ,
l = 2 ( L 1 n cl + L 2 n b ) ,
Δ ϕ = ϕ 0 χ λ ,
χ = 2 π l β λ Z ,

Metrics