Abstract

A discrete transverse electro-optic response associated with a field-induced antiferroelectric–ferroelectric phase transition has been observed to exist in lead zirconate thin films grown on Pt/Ti-coated silicon substrates. The magnitude of the birefringence jump from the antiferroelectric to the ferroelectric state is approximately 2.5 × 10−2. Quantitative correlation between the field-induced birefringence and the polarization was also experimentally studied. The discrete birefringent change in the thin films may be a desirable property for applications in optical switches or other integrated-optical devices.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uchino, Jpn. J. Appl. Phys. 24 (Suppl. 2), 460 (1985).
    [CrossRef]
  2. W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
    [CrossRef]
  3. F. Wang, K. K. Li, G. H. Haertling, Opt. Lett. 17, 1122 (1992).
    [CrossRef] [PubMed]
  4. K. K. Li, F. Wang, G. H. Haertling, “Antiferroelectric lead zirconate thin films derived from an acetate precursor system,” J. Mater. Sci. (to be published).
  5. G. H. Haertling, Ferroelectrics 116, 51 (1991).
    [CrossRef]
  6. F. Wang, “Electro-optic properties of (Pb,La)(Zr,Ti)O3 thin film and related materials,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 1991), p. 12.
  7. F. Wang, G. H. Haertling, “Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric–semiconductor interface,” Appl. Phys. Lett. (to be published).
  8. P. D. Thacher, J. Appl. Phys. 41, 4790 (1970).
    [CrossRef]
  9. R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
    [CrossRef]
  10. M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40, 720 (1969).
    [CrossRef]
  11. F. Wang, A. Y. Wu, Phys. Rev. B 46, 3709 (1992).
    [CrossRef]

1992

1991

G. H. Haertling, Ferroelectrics 116, 51 (1991).
[CrossRef]

1989

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

1985

K. Uchino, Jpn. J. Appl. Phys. 24 (Suppl. 2), 460 (1985).
[CrossRef]

1970

P. D. Thacher, J. Appl. Phys. 41, 4790 (1970).
[CrossRef]

1969

M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40, 720 (1969).
[CrossRef]

1964

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Cross, L. E.

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

Dam, C. Q.

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

DiDomenico, M.

M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40, 720 (1969).
[CrossRef]

Haertling, G. H.

F. Wang, K. K. Li, G. H. Haertling, Opt. Lett. 17, 1122 (1992).
[CrossRef] [PubMed]

G. H. Haertling, Ferroelectrics 116, 51 (1991).
[CrossRef]

K. K. Li, F. Wang, G. H. Haertling, “Antiferroelectric lead zirconate thin films derived from an acetate precursor system,” J. Mater. Sci. (to be published).

F. Wang, G. H. Haertling, “Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric–semiconductor interface,” Appl. Phys. Lett. (to be published).

Li, K. K.

F. Wang, K. K. Li, G. H. Haertling, Opt. Lett. 17, 1122 (1992).
[CrossRef] [PubMed]

K. K. Li, F. Wang, G. H. Haertling, “Antiferroelectric lead zirconate thin films derived from an acetate precursor system,” J. Mater. Sci. (to be published).

Miller, R. C.

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Pan, W.

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

Thacher, P. D.

P. D. Thacher, J. Appl. Phys. 41, 4790 (1970).
[CrossRef]

Uchino, K.

K. Uchino, Jpn. J. Appl. Phys. 24 (Suppl. 2), 460 (1985).
[CrossRef]

Wang, F.

F. Wang, A. Y. Wu, Phys. Rev. B 46, 3709 (1992).
[CrossRef]

F. Wang, K. K. Li, G. H. Haertling, Opt. Lett. 17, 1122 (1992).
[CrossRef] [PubMed]

F. Wang, “Electro-optic properties of (Pb,La)(Zr,Ti)O3 thin film and related materials,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 1991), p. 12.

F. Wang, G. H. Haertling, “Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric–semiconductor interface,” Appl. Phys. Lett. (to be published).

K. K. Li, F. Wang, G. H. Haertling, “Antiferroelectric lead zirconate thin films derived from an acetate precursor system,” J. Mater. Sci. (to be published).

Wemple, S. H.

M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40, 720 (1969).
[CrossRef]

Wu, A. Y.

F. Wang, A. Y. Wu, Phys. Rev. B 46, 3709 (1992).
[CrossRef]

Zhang, Q.

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

Appl. Phys. Lett.

R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Ferroelectrics

G. H. Haertling, Ferroelectrics 116, 51 (1991).
[CrossRef]

J. Appl. Phys.

P. D. Thacher, J. Appl. Phys. 41, 4790 (1970).
[CrossRef]

M. DiDomenico, S. H. Wemple, J. Appl. Phys. 40, 720 (1969).
[CrossRef]

W. Pan, C. Q. Dam, Q. Zhang, L. E. Cross, J. Appl. Phys. 66, 6014 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

K. Uchino, Jpn. J. Appl. Phys. 24 (Suppl. 2), 460 (1985).
[CrossRef]

Opt. Lett.

Phys. Rev. B

F. Wang, A. Y. Wu, Phys. Rev. B 46, 3709 (1992).
[CrossRef]

Other

K. K. Li, F. Wang, G. H. Haertling, “Antiferroelectric lead zirconate thin films derived from an acetate precursor system,” J. Mater. Sci. (to be published).

F. Wang, “Electro-optic properties of (Pb,La)(Zr,Ti)O3 thin film and related materials,” Ph.D. dissertation (University of New Mexico, Albuquerque, N.M., 1991), p. 12.

F. Wang, G. H. Haertling, “Birefringent bistability in (Pb,La)(Zr,Ti)O3 thin films with a ferroelectric–semiconductor interface,” Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measuring system for the field-induced birefringence of the PZ films. Also shown is the arrangement of the electrodes. PMT, photomultiplier tube.

Fig. 2
Fig. 2

(a) Field-induced birefringence as a function of the applied low-frequency voltage, (b) polarization as a function of the applied low-frequency voltage. The horizontal scale is 20 volts per division. The vertical scales are −0. 7 × 10−2 and 20 μC/cm2 for (a) and (b), respectively.

Fig. 3
Fig. 3

Birefringence as a function of the polarization. The horizontal and vertical scales are 10 μC/cm2 per division and −0.7 × 10−2, respectively.

Fig. 4
Fig. 4

Birefringence-versus-applied-voltage curve under a bias of −20 V. The horizontal and vertical scales are 10 volts per division and −0.7 × 10−2 per division, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 2 n 3 g P 2 ,

Metrics