Abstract

Persistent spectral hole burning in Sm2+-doped borate glasses is observed at room temperature. The possible number of holes is approximately five times larger than in halide glass systems because of the larger inhomogeneous linewidth and smaller hole width of borate glass. In this system the photoionization of trapping electrons other than Sm ions at a site is likely to be dominant because of the absence of an antihole adjacent to the hole.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988), pp. 1–15.
    [CrossRef]
  2. R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
    [CrossRef]
  3. K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
    [CrossRef]
  4. J. Zhang, S. Huang, J. Yu, Opt. Lett. 17, 1146 (1992).
    [CrossRef] [PubMed]
  5. K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
    [CrossRef]
  6. K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).
  7. G. Zhenan, J. Non-Cryst. Solids 80, 429 (1992).
    [CrossRef]
  8. S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
    [CrossRef]
  9. A. Winnacker, R. M. Shelby, R. M. Macfarlane, Opt. Lett. 10, 350 (1985).
    [CrossRef] [PubMed]

1993 (1)

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

1992 (4)

G. Zhenan, J. Non-Cryst. Solids 80, 429 (1992).
[CrossRef]

S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
[CrossRef]

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

J. Zhang, S. Huang, J. Yu, Opt. Lett. 17, 1146 (1992).
[CrossRef] [PubMed]

1991 (1)

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

1985 (1)

Bill, H.

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Croci, M.

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

Hirao, K.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Holliday, K.

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

Huang, S.

Izumitani, T.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Jaaniso, R.

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

Kurita, A.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

Kushida, T.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

Macfarlane, R. M.

Moerner, W. E.

W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988), pp. 1–15.
[CrossRef]

Shelby, R. M.

Soga, N.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Tanaka, K.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Todoroki, S.

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Wei, C.

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

Wild, U. P.

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

Winnacker, A.

Yu, J.

Zhang, J.

Zhenan, G.

G. Zhenan, J. Non-Cryst. Solids 80, 429 (1992).
[CrossRef]

Europhys. Lett. (1)

R. Jaaniso, H. Bill, Europhys. Lett. 16, 569 (1991).
[CrossRef]

J. Appl. Phys. (1)

S. Todoroki, K. Hirao, N. Soga, J. Appl. Phys. 72, 5853 (1992).
[CrossRef]

J. Lumin. (1)

K. Holliday, C. Wei, M. Croci, U. P. Wild, J. Lumin. 53, 227 (1992).
[CrossRef]

J. Non-Cryst. Solids (2)

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, A. Kurita, T. Kushida, J. Non-Cryst. Solids 152, 267 (1993).
[CrossRef]

G. Zhenan, J. Non-Cryst. Solids 80, 429 (1992).
[CrossRef]

Opt. Lett. (2)

Other (2)

W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer-Verlag, Berlin, 1988), pp. 1–15.
[CrossRef]

K. Hirao, S. Todoroki, K. Tanaka, N. Soga, T. Izumitani, “Room-temperature persistent spectral hole burning of Sm2+ in fluorohafnate glasses,” J. Lumin. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Absorption spectrum and (b) fluorescence spectrum excited by a Xe lamp (400 nm). Both spectra were measured at room temperature. The inset is the energy-level diagram of Sm2+.

Fig. 2
Fig. 2

Bottom trace: excitation spectrum of Sm2+-doped borate glass obtained by monitoring the 5D07F2 emission before and after irradiation with a DCM dye laser at 685 nm. The temperature is 300 K, and the burning time is 900 s. The PHB is observed. Top trace: the difference signal.

Fig. 3
Fig. 3

Burning time dependence of the persistent hole depth obtained by monitoring the 5D07F2 emission in the presence of burning irradiation of a DCM dye laser at 685 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sm 2 + ( trap ) Sm 3 + + ( trap ) ,

Metrics