Abstract

We present a method for the coherent coupling of single-mode fiber lasers that produces a single Gaussian output beam. The output and the spectral properties of an experimental device composed of three coupled Nd3+ single-mode fiber lasers have been studied. For different coupling conditions, typically 70% of the total output power has been produced in a single beam. The dynamic behavior of the emission spectrum is discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
    [CrossRef] [PubMed]
  2. J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
    [CrossRef]
  3. R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
    [CrossRef]
  4. E. M. Philipp-Rutz, Appl. Phys. Lett. 26, 475 (1975).
    [CrossRef]
  5. H. P. Herzig, R. Dändliker, J. M. Teijido, in Holographic Systems, Components and Applications, Conference Publ. No. 311 (Institution of Electrical Engineers, London, 1989), pp. 133–137.
  6. P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).
  7. H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
    [CrossRef]
  8. J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).
  9. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, D. Prongué, Appl. Opt. 31, 5712 (1992).
    [CrossRef] [PubMed]

1992 (1)

1990 (2)

H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

1987 (1)

1986 (1)

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

1985 (1)

R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
[CrossRef]

1975 (1)

E. M. Philipp-Rutz, Appl. Phys. Lett. 26, 475 (1975).
[CrossRef]

Dändliker, R.

H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

H. P. Herzig, R. Dändliker, J. M. Teijido, in Holographic Systems, Components and Applications, Conference Publ. No. 311 (Institution of Electrical Engineers, London, 1989), pp. 133–137.

Ehbets, P.

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

Gale, M. T.

Herzig, H. P.

H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

H. P. Herzig, R. Dändliker, J. M. Teijido, in Holographic Systems, Components and Applications, Conference Publ. No. 311 (Institution of Electrical Engineers, London, 1989), pp. 133–137.

Kjelberg, I.

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

Lang, G. K.

Leger, J. R.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
[CrossRef] [PubMed]

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Maystre, F.

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

Morel, J.

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

Philipp-Rutz, E. M.

E. M. Philipp-Rutz, Appl. Phys. Lett. 26, 475 (1975).
[CrossRef]

Prongué, D.

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, D. Prongué, Appl. Opt. 31, 5712 (1992).
[CrossRef] [PubMed]

H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

Raynor, J. M.

Rediker, R. H.

R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
[CrossRef]

Regnault, P.

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

Rosenfeld, D.

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

Schloss, R. P.

R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
[CrossRef]

Schütz, H.

Swanson, G. J.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
[CrossRef] [PubMed]

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Teijido, J. M.

H. P. Herzig, R. Dändliker, J. M. Teijido, in Holographic Systems, Components and Applications, Conference Publ. No. 311 (Institution of Electrical Engineers, London, 1989), pp. 133–137.

VanRuyven, L. J.

R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
[CrossRef]

Veldkamp, W. B.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
[CrossRef] [PubMed]

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Phys. Lett. 48, 888 (1986).
[CrossRef]

R. H. Rediker, R. P. Schloss, L. J. VanRuyven, Appl. Phys. Lett. 46, 133 (1985).
[CrossRef]

E. M. Philipp-Rutz, Appl. Phys. Lett. 26, 475 (1975).
[CrossRef]

Helv. Phys. Acta (1)

J. Morel, D. Rosenfeld, F. Maystre, R. Dändliker, Helv. Phys. Acta 63, 813 (1990).

Jpn. J. Appl. Phys. (1)

H. P. Herzig, D. Prongué, R. Dändliker, Jpn. J. Appl. Phys. 29, L1307 (1990).
[CrossRef]

Other (2)

H. P. Herzig, R. Dändliker, J. M. Teijido, in Holographic Systems, Components and Applications, Conference Publ. No. 311 (Institution of Electrical Engineers, London, 1989), pp. 133–137.

P. Ehbets, H. P. Herzig, R. Dändliker, P. Regnault, I. Kjelberg, “Beam shaping of high-power laser diode arrays by continuous surface-relief elements,” J. Mod. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic configuration for the coherent coupling of three single-mode fiber lasers. M's, cavity mirrors; Ai, Φi, the amplitudes and phases of each laser, respectively.

Fig. 2
Fig. 2

Calculated distribution of the output power in the five diffraction orders of the fan-in element for different relative amplitudes and phases of the three laser beams. Left: optimal situation, with Ai = A0 and Φ1 = 0, Φ2 = 0, Φ3 = π and with 93.8% efficiency. Center: Ai = A0 and Φ1 = π, Φ2 = 0, Φ3 = 0, with 5.13% efficiency. Right: Φ1 = 0, Φ2 = 0, Φ3 = π (ideal) and A1 = 2, A2 = 1, A3 = 1, with 80.3% efficiency.

Fig. 3
Fig. 3

Experimental setup. A's, input mirrors; M, output mirror; PC's, polarization controllers; FH, fiber holder; L, collimating lens; FP, fan-in plate.

Fig. 4
Fig. 4

Calculated phase profile of the grating (left) and the power distribution measured at the output of the fan in when it is illuminated with a collimated beam (right). The measured power distribution is 0.55:1:0.55 instead of the designed ratio of 1:1:1.

Fig. 5
Fig. 5

Output profile of the coupled-cavity laser. A coupling efficiency of 70% has been achieved. The difference with the respect to the maximum theoretical value of 93.8% can be attributed to the nonideal properties of the fan in.

Fig. 6
Fig. 6

Power spectrum of the coupled-cavity fiber laser. The fine structure in the spectrum is produced by the input mirrors acting as Fabry–Perot étalons. This fine structure changes when the length of one of the fiber lasers is slightly changed. These changes permit the coupled-cavity laser to find a new stable situation for minimum threshold.

Metrics