Abstract

We have written Bragg gratings of as much as 94% reflectance in germanium-doped optical fiber by two-beam interference of 244-nm continuous-wave UV light. We measured grating reflectance as a function of exposure time for UV light intensities ranging from 1.5 to 47 W/cm2. The observed dependence of index modulation on time and intensity does not agree with the predictions of a model based on depletion of a defect population by one-photon absorption.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  2. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
    [CrossRef]
  3. M. J. Yuen, Appl. Opt. 21, 136 (1982).
    [CrossRef] [PubMed]
  4. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [CrossRef] [PubMed]
  5. G. Meltz, W. W. Morey, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185 (1991).
  6. V. Mizrahi, R. M. Atkins, Electron. Lett. 28, 2210 (1992).
    [CrossRef]
  7. The fiber used was AT&T Accutether, which contains 9 mol. % Ge doping in a core diameter of approximately 7 μm and is single mode at 1500 nm. We use the trade name to specify the experimental procedure adequately and do not imply endorsement by the National Institute of Standards and Technology.
  8. P. Yeh, Optical Waves in Layered Media (Wiley Interscience, New York, 1988), p. 186.
  9. R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
    [CrossRef]

1993 (1)

R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
[CrossRef]

1992 (1)

V. Mizrahi, R. M. Atkins, Electron. Lett. 28, 2210 (1992).
[CrossRef]

1991 (1)

G. Meltz, W. W. Morey, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185 (1991).

1990 (1)

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

1989 (1)

1982 (1)

1981 (1)

Armitage, J. R.

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

Atkins, R. M.

R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
[CrossRef]

V. Mizrahi, R. M. Atkins, Electron. Lett. 28, 2210 (1992).
[CrossRef]

Davey, S. T.

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

Erdogan, T.

R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
[CrossRef]

Garside, B. K.

Glenn, W. H.

Kashyap, R.

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

Lam, D. K. W.

Meltz, G.

G. Meltz, W. W. Morey, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185 (1991).

G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

Mizrahi, V.

R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
[CrossRef]

V. Mizrahi, R. M. Atkins, Electron. Lett. 28, 2210 (1992).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185 (1991).

G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

Williams, D. L.

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

Wyatt, R.

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley Interscience, New York, 1988), p. 186.

Yuen, M. J.

Appl. Opt. (2)

Electron. Lett. (3)

R. M. Atkins, V. Mizrahi, T. Erdogan, Electron. Lett. 29, 385 (1993).
[CrossRef]

R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, D. L. Williams, Electron. Lett. 26, 730 (1990).
[CrossRef]

V. Mizrahi, R. M. Atkins, Electron. Lett. 28, 2210 (1992).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. Meltz, W. W. Morey, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 185 (1991).

Other (2)

The fiber used was AT&T Accutether, which contains 9 mol. % Ge doping in a core diameter of approximately 7 μm and is single mode at 1500 nm. We use the trade name to specify the experimental procedure adequately and do not imply endorsement by the National Institute of Standards and Technology.

P. Yeh, Optical Waves in Layered Media (Wiley Interscience, New York, 1988), p. 186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Prism interferometer and detection system. The prism splits the UV beam and produces an interference pattern along the optical fiber. A photodiode (pd) detects visible fluorescence produced when the core is exposed to UV light. An optical spectrum analyzer with a 50:50 fiber coupler analyzes the 1500-nm LED light reflected from Bragg gratings.

Fig. 2
Fig. 2

(a) Reflectance data points plotted versus time for an exposure intensity of 46 W/cm2 and a final index modulation of ∼8 × 10−5. The dashed curve is a fit to R that assumes that Δn obeys the time dependence given by the model, with Δnmax = 1.71 × 10−4. The solid curve is a fit to R that assumes that Δn = Ctb (C = 4.3 × 10−5, b = 0.32, t in minutes). (b) Reflectance versus time with fits assuming that Δn = Ctb for three gratings exposed at lower intensities (upper trace: C = 3.4 × 10−5, b = 0.31; middle trace: C = 2.4 × 10−5, b = 0.29; lower trace: C = 1.2 × 10−5, b = 0.25). Error bars for the two lower traces are smaller than the symbols shown.

Fig. 3
Fig. 3

Reflectance data points plotted versus intensity at the exposure times of 15 s and 5 min. The dashed curves are fits obtained with our model with Δnmax = 1.71 × 10−4. The solid curves are fits assuming that Δn = CIb (upper trace: C = 0.13, b = 0.51; lower trace: C = 0.059, b = 0.46).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = tan h 2 [ ( η π L Δ n ) / λ ] ,
Δ n = Δ n max [ 1 exp ( AIt ) ] ,

Metrics