Abstract
On the basis of a simple analysis of the coupled nonlinear Schrödinger equations that govern pulse propagation in isotropic nonlinear dispersive media, we show the existence of a novel class of bound-vector solitary waves. These solitary waves are novel in exhibiting elliptical polarization that varies across the pulse and evolves periodically during propagation while the pulse intensity envelope remains unchanged. Simple physical arguments allow us to understand the existence and the features of these particular solutions.
© 1993 Optical Society of America
Full Article |
PDF Article
OSA Recommended Articles
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (8)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription