Abstract

An optically addressed spatial light modulator based on a thin film of chemically enhanced bacteriorhodopsin is demonstrated. Incoherent-to-coherent light conversion is achieved by exploitation of both the large shift in absorption maxima accompanying the bRM phototransformation and the extended M-intermediate lifetime resulting from the chemical enhancement of the protein at high pH. The device exhibits a linear dynamic range of 120:1 at 514 nm and a resolution of ~100 line pairs/mm.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
    [CrossRef]
  2. R. R. Birge, Annu. Rev. Phys. Chem. 41, 683 (1990).
    [CrossRef] [PubMed]
  3. D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
    [CrossRef] [PubMed]
  4. R. Thoma, N. Hampp, C. Brauchle, D. Oesterhelt, Opt. Lett. 16, 651 (1991).
    [CrossRef] [PubMed]
  5. O. Werner, B. Fisher, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
    [CrossRef] [PubMed]
  6. Z. Chen, A. Lewis, H. Takei, I. Nabenzahl, Appl. Opt. 30, 5188 (1991).
    [CrossRef] [PubMed]
  7. N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).
  8. Q. W. Song, Z. Chen, P. Blumer, R. Gross, Z. Chen, R. Birge, Opt. Lett. 18, 775 (1993).
    [CrossRef] [PubMed]
  9. R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).
  10. B. Becher, T. G. Ebrey, Biophys. J. 17, 185 (1977).
    [CrossRef] [PubMed]
  11. N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
    [CrossRef]

1993 (1)

1992 (2)

R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

1991 (3)

1990 (3)

O. Werner, B. Fisher, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
[CrossRef] [PubMed]

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

R. R. Birge, Annu. Rev. Phys. Chem. 41, 683 (1990).
[CrossRef] [PubMed]

1986 (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

1977 (1)

B. Becher, T. G. Ebrey, Biophys. J. 17, 185 (1977).
[CrossRef] [PubMed]

Athale, R. A.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Becher, B.

B. Becher, T. G. Ebrey, Biophys. J. 17, 185 (1977).
[CrossRef] [PubMed]

Birge, R.

Birge, R. R.

R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).

R. R. Birge, Annu. Rev. Phys. Chem. 41, 683 (1990).
[CrossRef] [PubMed]

Blumer, P.

Brauchle, C.

Bräuchle, C.

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Chen, Z.

Ebrey, T. G.

B. Becher, T. G. Ebrey, Biophys. J. 17, 185 (1977).
[CrossRef] [PubMed]

Fisher, B.

Gross, R.

Gross, R. B.

R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).

Hampp, N.

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef] [PubMed]

R. Thoma, N. Hampp, C. Brauchle, D. Oesterhelt, Opt. Lett. 16, 651 (1991).
[CrossRef] [PubMed]

Ivanitskii, G. R.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

Izgi, K. C.

R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).

Lee, S. H.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Lewis, A.

Nabenzahl, I.

Nebenzahl, I.

Neff, J. A.

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Oesterhelt, D.

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef] [PubMed]

R. Thoma, N. Hampp, C. Brauchle, D. Oesterhelt, Opt. Lett. 16, 651 (1991).
[CrossRef] [PubMed]

Popp, A.

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Song, Q. W.

Soskin, M. S.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

Takei, H.

Taranenko, V. B.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

Thoma, R.

Vsevolodov, N. N.

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

Werner, O.

Annu. Rev. Phys. Chem. (1)

R. R. Birge, Annu. Rev. Phys. Chem. 41, 683 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

Avtometrya (1)

N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, Avtometrya 2, 41 (1986).

Biophys. J. (1)

B. Becher, T. G. Ebrey, Biophys. J. 17, 185 (1977).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

N. Hampp, A. Popp, C. Bräuchle, D. Oesterhelt, J. Phys. Chem. 96, 4679 (1992).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

J. A. Neff, R. A. Athale, S. H. Lee, Proc. IEEE 78, 826 (1990).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. B. Gross, K. C. Izgi, R. R. Birge, Proc. Soc. Photo-Opt. Instrum. Eng. 1662, 186 (1992).

Q. Rev. Biophys. (1)

D. Oesterhelt, C. Brauchle, N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the photochemical and thermal reactions in the BR photocycle. The thermal intermediates are denoted by letters. The numbers in parentheses indicate the wavelength of the absorption maximum for each intermediate state. The numbers in shaded boxes show the formation time of the thermal intermediates.

Fig. 2
Fig. 2

Measured absorption spectra of the bR and M states in the chemically enhanced film. The addition of the chemicals guanidine hydrochloride and diaminopropane caused no absorption maxima shifts relative to that of the native protein containing no chemicals.

Fig. 3
Fig. 3

Results of computer simulations predicting the intensity-controlled transmission properties of a BR film. Each curve is calculated for a specific M-intermediate lifetime (see the inset numbers). The film O.D.514 was assumed to be 3.7 and the film thickness 200 μm.

Fig. 4
Fig. 4

Schematic diagram of the experimental apparatus used for measuring the dynamic range and resolution of the BR SLM.

Fig. 5
Fig. 5

Relative transmission of a weak coherent readout beam (514 nm) as a function of incoherent white-light intensity measured from the BR SLM. The intensity of the readout beam was 0.16 mW/cm2.

Fig. 6
Fig. 6

Photographs of the reduced (0.4×) resolution chart taken after readout from the BR SLM: (a) the entire resolution chart, (b) an enlarged central portion of chart. The resolution of the film was found to be ~100 line pairs/mm after correction for demagnification.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

b R ( State 0 ) Φ 2 ~ 0.65 Φ 1 ~ 0.65 M ( State 1 ) ,
d [ b R ] d t = i = 1 all wavelengths - K λ i b R M [ b R ] + K λ i M b R [ M ] + k M [ M ] ,
K λ i = 2.3026 Φ ( λ i ) λ i I ( λ i ) N a h c ,
[ b R ] [ b R 0 ] = i all wavelengths K λ i M b R + k m K λ i b R M + K λ i M b R + k m ,
I n = I ( n - 1 ) exp ( - 2.3026 { M ( λ ) [ b R 0 ] + { b R ( λ ) - M ( λ ) } { [ b R ] / [ b R 0 ] } n [ b R 0 ] } d n ) ,

Metrics