Abstract

The coupled-dipole method is widely used to calculate the light-scattering matrix S from arbitrary particles. An important parameter in the model is the size of the dipolar subunits. Usually a size of ~1/10 to ~1/20 of the wavelength of the incident light is sufficient for accurate calculations. However, it was noted that accurate S34 calculations require much smaller dipolar subunits. We show that this conclusion is too pessimistic, by examining the sensitivity of the S34 elements on surface roughness of spherical particles. Furthermore we give an example of an accurate S34 calculation with dipolar subunits as large as 1/10 of the wavelength.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 171 (1973).
    [CrossRef]
  2. A. Lakhtakia, Opt. Commun. 79, 1 (1990).
    [CrossRef]
  3. S. B. Singham, Appl. Opt. 28, 5058 (1989).
    [CrossRef] [PubMed]
  4. W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
    [CrossRef] [PubMed]
  5. P. M. A. Sloot, A. G. Hoekstra, H. van der Liet, C. G. Figdor, Appl. Opt. 28, 1752 (1989).
    [CrossRef] [PubMed]
  6. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 3, p. 79.
    [CrossRef]

1990

A. Lakhtakia, Opt. Commun. 79, 1 (1990).
[CrossRef]

1989

1976

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

1973

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 171 (1973).
[CrossRef]

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 3, p. 79.
[CrossRef]

Bickel, W. S.

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

Davidson, J. F.

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

Figdor, C. G.

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 3, p. 79.
[CrossRef]

Hoekstra, A. G.

Huffman, D. R.

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

Kilkson, R

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia, Opt. Commun. 79, 1 (1990).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 171 (1973).
[CrossRef]

Purcell, E. M.

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 171 (1973).
[CrossRef]

Singham, S. B.

Sloot, P. M. A.

van der Liet, H.

Appl. Opt.

Astrophys. J.

E. M. Purcell, C. R. Pennypacker, Astrophys. J. 186, 171 (1973).
[CrossRef]

Opt. Commun.

A. Lakhtakia, Opt. Commun. 79, 1 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA

W. S. Bickel, J. F. Davidson, D. R. Huffman, R Kilkson, Proc. Natl. Acad. Sci. USA 73, 486 (1976).
[CrossRef] [PubMed]

Other

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 3, p. 79.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

S34/S11 as a function of the scattering angle for a sphere with α = 10.7 and m = 1.05. The curve is the Mie calculation, and the dots are the CD calculations, with d = λ/10 (20,672 dipoles).

Fig. 2
Fig. 2

Cross section of rough spheres, defined by Eq. (2), with l = 3 and l = 5.

Fig. 3
Fig. 3

S34 element as a function of the scattering angle for a sphere with α = 1.55 (solid curve) and of equal-volume rough spheres with l = 3 (short-dashed curve) and l = 5 (long-dashed curve). The refractive index was 1.33.

Fig. 4
Fig. 4

S11 element as a function of the scattering angle; the rest as in Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( i + 1 / 2 ) 2 + ( j + 1 / 2 ) 2 + ( k + 1 / 2 ) 2 l 2 .
r = r 0 [ 1.0 - ( 2 l ) - 1 cos ( 4 l θ ) ] ,

Metrics