Abstract

Nonspecular effects for reflection from a lossy dielectric are studied under the paraxial approximation. It is shown that lateral shifts larger than 100 wavelengths are obtained for an angle of incidence close to the Brewster angle. Furthermore, it is shown that a three-dimensional Gaussian beam with a circular cross section becomes on reflection near the Brewster angle a Gaussian beam with an elliptical cross section. In addition, an evaluation of the accuracy of the paraxial approximation is done by comparison with an exact calculation.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, C. Fan, J. Opt. Soc. Am. A 5, 1407 (1988).
    [CrossRef]
  2. W. Nasalski, J. Opt. Soc. Am. A 6, 1447 (1989).
    [CrossRef]
  3. F. Falco, T. Tamir, J. Opt. Soc. Am. A 7, 185 (1990).
    [CrossRef]
  4. J. J. Greffet, C. Baylard, Opt. Commun. 93, 271 (1992).
    [CrossRef]
  5. O. Costa de Beauregard, Nouv. Rev. Opt. 3, 191 (1972).
    [CrossRef]
  6. C. Imbert, Y. Levy, Nouv. Rev. Opt. 6, 285 (1975).
    [CrossRef]
  7. M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
    [CrossRef]
  8. F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
    [CrossRef] [PubMed]
  9. P. Mazur, B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
    [CrossRef]
  10. R. P. Riesz, R. Simon, J. Opt. Soc. Am. A 2, 1809 (1985).
    [CrossRef]
  11. S. Zhang, T. Tamir, J. Opt. Soc. Am. A 6, 1368 (1989).
    [CrossRef]
  12. T. Tamir, J. Opt. Soc. Am. A 3, 558 (1986).
    [CrossRef]
  13. O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
    [CrossRef]
  14. C. C. Chan, T. Tamir, Opt. Lett. 10, 378 (1985).
    [CrossRef] [PubMed]
  15. L. M. Brekhovskikh, in Waves in Layered Media (Academic, San Diego, Calif., 1980), p. 245.

1992 (2)

J. J. Greffet, C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

1990 (1)

1989 (2)

1988 (1)

1986 (1)

1985 (2)

1984 (1)

P. Mazur, B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

1977 (2)

M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
[CrossRef]

O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
[CrossRef]

1975 (1)

C. Imbert, Y. Levy, Nouv. Rev. Opt. 6, 285 (1975).
[CrossRef]

1972 (1)

O. Costa de Beauregard, Nouv. Rev. Opt. 3, 191 (1972).
[CrossRef]

Baylard, C.

J. J. Greffet, C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

Brekhovskikh, L. M.

L. M. Brekhovskikh, in Waves in Layered Media (Academic, San Diego, Calif., 1980), p. 245.

Bretenaker, F.

F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Chan, C. C.

Costa de Beauregard, O.

O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
[CrossRef]

O. Costa de Beauregard, Nouv. Rev. Opt. 3, 191 (1972).
[CrossRef]

Djafari-Rouhani, B.

P. Mazur, B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Dutriaux, L.

F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Falco, F.

Fan, C.

Floch, A. L.

F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Greffet, J. J.

J. J. Greffet, C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

Imbert, C.

O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
[CrossRef]

C. Imbert, Y. Levy, Nouv. Rev. Opt. 6, 285 (1975).
[CrossRef]

Levy, Y.

O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
[CrossRef]

C. Imbert, Y. Levy, Nouv. Rev. Opt. 6, 285 (1975).
[CrossRef]

Mazur, P.

P. Mazur, B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Nasalski, W.

Read, L. A. A.

M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
[CrossRef]

Reesor, G. E.

M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
[CrossRef]

Riesz, R. P.

Simon, R.

Tamir, T.

Wong, M.

M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
[CrossRef]

Zhang, S.

Can. J. Phys. (1)

M. Wong, G. E. Reesor, L. A. A. Read, Can. J. Phys. 55, 1061 (1977).
[CrossRef]

J. Opt. Soc. Am. A (6)

Nouv. Rev. Opt. (2)

O. Costa de Beauregard, Nouv. Rev. Opt. 3, 191 (1972).
[CrossRef]

C. Imbert, Y. Levy, Nouv. Rev. Opt. 6, 285 (1975).
[CrossRef]

Opt. Commun. (1)

J. J. Greffet, C. Baylard, Opt. Commun. 93, 271 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

P. Mazur, B. Djafari-Rouhani, Phys. Rev. B 30, 6759 (1984).
[CrossRef]

Phys. Rev. D (1)

O. Costa de Beauregard, C. Imbert, Y. Levy, Phys. Rev. D 15, 3553 (1977).
[CrossRef]

Phys. Rev. Lett. (1)

F. Bretenaker, A. L. Floch, L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992).
[CrossRef] [PubMed]

Other (1)

L. M. Brekhovskikh, in Waves in Layered Media (Academic, San Diego, Calif., 1980), p. 245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the system, showing the definition of the shifts.

Fig. 2
Fig. 2

Phase of the reflectivity of the p-polarized reflection factor for three values of the index.

Fig. 3
Fig. 3

Lateral shift: n = 1.5 + i × 10−2 and n = 1.5 + i × 10−4.

Fig. 4
Fig. 4

Astigmatic effect: n = 1.5 + i × 10−4. The beam waist is Mxw along the xa axis and Myw along the ya axis.

Fig. 5
Fig. 5

Direct computation of the reflected field for three different angles of incidence.

Tables (1)

Tables Icon

Table 1 Results for δx and Mx

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E i ( x | | i , z i ) = w 2 k i 2 4 π exp ( - w 2 k i 2 s i 2 4 ) u ( v i ) × exp ( i k i s i · x | | i + i k i c i z i ) d s i
u s = z Λ v / z Λ v ,
u p = v Λ u s
E r ( x | | r , z r ) = w 2 k i 2 4 π R ( s r ) exp ( - w 2 k i 2 s r 2 4 ) u ( v r ) × exp [ + i k i ( s r · x | | r + c r z r ) ] d s r
H r ( x r , z r = 0 ) = w 2 π - R ( α ) × exp [ - ( α w 2 ) 2 + i α x r ] d α .
δ x = - x H ( x ) 2 d x - H ( x ) 2 d x .
k s 2 = ω 2 c 2 + 1 .

Metrics