Abstract

Polymers doped with photochromic spirooxazine and spiropyran dyes have been investigated for real-time holographic recording. The temporal holographic response was found to depend strongly on optical recording configurations and on the recording beam intensities. The exposure sensitivities that were required for maximal diffraction efficiency were 250 mJ/cm2 for the polymers doped with spirooxazine and 650 mJ/cm2 for those doped with spiropyran. All-optical modulation of the holographic gratings with 2000 lines/mm is possible by modulation of a separate excitation beam of incoherent UV radiation. The modulated gratings can be stored for relatively long times or erased immediately.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
    [CrossRef]
  2. A. A. Friesem, J. L. Walker, Appl. Opt. 9, 201 (1970).
    [CrossRef] [PubMed]
  3. W. J. Tomlinson, E. A. Chandross, R. L. Fork, C. A. Pryde, A. A. Lamola, Appl. Opt. 11, 533 (1972).
    [CrossRef] [PubMed]
  4. C. J. G. Kirby, I. Bennion, Proc. Inst. Elect. Eng. 133, 98 (1986).
  5. H. Dürr, H. Bouas-Laurant, eds., Photochromism, Molecules and Systems (Elsevier, New York, 1990).
  6. R. C. Bertelson, in Photochromism, G. H. Brown, ed. (Wiley-Interscience, New York, 1971), Chap. 3.
  7. H. Kogelnik, Bell Syst. Tech. J 48, 2909 (1969).
  8. C. Bräuchle, D. M. Burland, Angew. Chem. Int. Ed. Engl. 22, 582 (1983).
    [CrossRef]
  9. E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

1986

C. J. G. Kirby, I. Bennion, Proc. Inst. Elect. Eng. 133, 98 (1986).

1983

C. Bräuchle, D. M. Burland, Angew. Chem. Int. Ed. Engl. 22, 582 (1983).
[CrossRef]

1973

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

1972

1970

1969

H. Kogelnik, Bell Syst. Tech. J 48, 2909 (1969).

1968

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Axenchikov, A. P.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Bennion, I.

C. J. G. Kirby, I. Bennion, Proc. Inst. Elect. Eng. 133, 98 (1986).

Bertelson, R. C.

R. C. Bertelson, in Photochromism, G. H. Brown, ed. (Wiley-Interscience, New York, 1971), Chap. 3.

Bobrinev, V. I.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Bräuchle, C.

C. Bräuchle, D. M. Burland, Angew. Chem. Int. Ed. Engl. 22, 582 (1983).
[CrossRef]

Burland, D. M.

C. Bräuchle, D. M. Burland, Angew. Chem. Int. Ed. Engl. 22, 582 (1983).
[CrossRef]

Chandross, E. A.

Drapkina, D. A.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Fork, R. L.

Friesem, A. A.

Gulaniane, E. H.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Kardash, N. S.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Kirby, C. J. G.

C. J. G. Kirby, I. Bennion, Proc. Inst. Elect. Eng. 133, 98 (1986).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J 48, 2909 (1969).

Krongauz, V. A.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Kurkovskaya, L. N.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Lamola, A. A.

Mikealiane, A. L.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Prokoda, A. L.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Pryde, C. A.

Shatun, V. V.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Shifrina, R. R.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Tomlinson, W. J.

Walker, J. L.

Zaitseva, E. l.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Angew. Chem. Int. Ed. Engl.

C. Bräuchle, D. M. Burland, Angew. Chem. Int. Ed. Engl. 22, 582 (1983).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J

H. Kogelnik, Bell Syst. Tech. J 48, 2909 (1969).

IEEE J. Quantum Electron.

A. L. Mikealiane, A. P. Axenchikov, V. I. Bobrinev, E. H. Gulaniane, V. V. Shatun, IEEE J. Quantum Electron. QE-4, 757 (1968).
[CrossRef]

Khim. Geterotsikl. Soedin.

E. l. Zaitseva, A. L. Prokoda, L. N. Kurkovskaya, R. R. Shifrina, N. S. Kardash, D. A. Drapkina, V. A. Krongauz, Khim. Geterotsikl. Soedin. 10, 1362 (1973).

Proc. Inst. Elect. Eng.

C. J. G. Kirby, I. Bennion, Proc. Inst. Elect. Eng. 133, 98 (1986).

Other

H. Dürr, H. Bouas-Laurant, eds., Photochromism, Molecules and Systems (Elsevier, New York, 1990).

R. C. Bertelson, in Photochromism, G. H. Brown, ed. (Wiley-Interscience, New York, 1971), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. SG, signal generator; D, Si photodetector; S, sample; M’s, mirrors; C’s, collimators and spatial light filters; BS, beam splitter; CH, chopper; LI, lock-in amplifier.

Fig. 2
Fig. 2

Real-time holographic growth curves of gratings recorded at 514 nm in spirooxazine/PMMA layers; readout was at 633 nm. Trace a shows simultaneous exposure to the UV (364-nm) excitation beam of 10-mW/cm2 intensity and two recording beams each of 10-mW/cm2 intensity. Trace b shows initial exposure to the excitation beam and then separately to the recording beams. Trace c shows additional exposure to the recording beams only, immediately following the simultaneous exposure to all the beams.

Fig. 3
Fig. 3

Holographic growth curves in spirooxazine/PMMA as a function of argon-laser recording beam intensities of 10 mW/cm2 (trace a), 20 mW/cm2 (trace b), and 40 mW/cm2 (trace c). The UV excitation beam intensity was 10 mW/cm2.

Fig. 4
Fig. 4

Holographic growth and erasure curves of spirooxazine/PMMA layers. Recording was with two argon-laser beams, each of 20 mW/cm2, immediately following a simultaneous exposure to the recording and UY excitation beams. Erasure was achieved with a postexposure to a uniform UV beam of 10 mW/cm2.

Fig. 5
Fig. 5

Modulation of holographic gratings (dotted traces) as a result of a UV square-wave modulation of excitation beam (solid traces). During modulation, the gratings were continuously exposed to the recording beams, each of 20 mW/cm2, with modulation frequency of (a) 0.2 Hz and (b) 2.5 Hz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A R B , λ B , R T R A , λ A B ,
- d B / d t = R B B - R A A + R T B .
B ( t ) = B SS { 1 - exp [ - ( R A + R B + R T ) t ] } ,
B ( x , t ) = B 0 ( t ) + B 1 ( t ) cos ( 2 π x / d ) ,
DE = sinh 2 ( a 1 d / 2 cos θ ) ,
DE ( t ) B 1 ( t ) 2 ( B 1 SS { 1 - exp [ - ( R A + R B + R T ) t ] } ) 2 [ B 1 SS ( R A + R B + R T ) t ] 2 ,

Metrics