Abstract

We describe a novel method for semiconductor laser noise reduction that uses a combination of optical and electronic feedback. A Doppler-free Faraday resonance in Cs vapor provided both optical feedback and discrimination for an electronic feedback scheme incorporating FM sideband spectroscopy. The introduction of electronic feedback further reduced the low-frequency fluctuation noise power by more than 2 orders of magnitude, resulting in a linewidth of 1.4 kHz.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, R. Nabiev, K. Vahala, Opt. Lett. 15, 1359 (1990).
    [CrossRef] [PubMed]
  2. Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992).
    [CrossRef] [PubMed]
  3. J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).
  4. J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).
  5. R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  6. W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 60, 1544 (1992).
    [CrossRef]
  7. N. Nakagawa, M. Kurogi, M. Ohtsu, Opt. Lett. 17, 934 (1992).
    [CrossRef] [PubMed]

1992

1990

1983

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Campbell, J. C.

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 60, 1544 (1992).
[CrossRef]

Drever, R.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hall, J.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Iannelli, J.

Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992).
[CrossRef] [PubMed]

J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).

J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).

Kitching, J.

Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992).
[CrossRef] [PubMed]

J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).

J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).

Kowalsky, F.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kurogi, M.

Lee, W. D.

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 60, 1544 (1992).
[CrossRef]

Manley, M.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Nabiev, R.

Nakagawa, N.

Ohtsu, M.

Shevy, Y.

Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992).
[CrossRef] [PubMed]

J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).

J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).

Vahala, K.

Ward, H.

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Yariv, A.

Y. Shevy, J. Iannelli, J. Kitching, A. Yariv, Opt. Lett. 17, 661 (1992).
[CrossRef] [PubMed]

A. Yariv, R. Nabiev, K. Vahala, Opt. Lett. 15, 1359 (1990).
[CrossRef] [PubMed]

J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).

J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).

Appl. Phys. B

R. Drever, J. Hall, F. Kowalsky, J. Hough, G. Ford, M. Manley, H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett.

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 60, 1544 (1992).
[CrossRef]

Opt. Lett.

Other

J. Iannelli, Y. Shevy, J. Kitching, A. Yariv, “Linewidth reduction and frequency stabilization of semiconductor lasers using dispersive losses in an atomic vapor,” IEEE J. Quantum Electron. (to be published).

J. Kitching, Y. Shevy, J. Iannelli, A. Yariv, “Measurements of 1/f frequency noise reduction in semiconductor lasers using optical feedback with dispersive loss,” J. Lightwave Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: SCL, semiconductor laser cavity; L’s, lenses; BS, beam splitter; PBS, polarizing beam splitter; ND, neutral-density filter; M, mirror; PZT’s, piezoelectric transducers; P’s, polarizers; D1, photodiode; APD, avalanche photodiode.

Fig. 2
Fig. 2

Optical feedback intensity (curve A) and the electronic feedback error signal (curve B) versus the laser frequency. We obtained this trace by varying the PZT voltage (note that because of chirp reduction the horizontal scale is not linear with frequency2).

Fig. 3
Fig. 3

(a) Frequency noise spectral density and (b) the self-heterodyne beat-note signal. Curves A are obtained with optical feedback only, and curves B are with a combination of optical and electronic feedback. The ripples in Fig. 3(b), trace B, are an indication that the laser linewidth is below the resolution of our self-heterodyne apparatus (6 kHz).

Fig. 4
Fig. 4

Field spectrum calculated with the data from Fig. 3(a) with optical feedback only (trace A) and a combination of optical and electronic feedback (trace B).

Fig. 5
Fig. 5

Square root of the Allen variance calculated from Fig. 3(a) with optical feedback only (trace A) and a combination of optical and electronic feedback (trace B).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S φ ˙ ( f ) = S φ ˙ 0 ( f ) Q 2 S φ ˙ 0 ( f ) { 1 + 1 + α 2 [ κ ( ω ) ( τ 0 + ϕ / ω ) cos ( ϕ + tan - 1 α ) ] } 2 ,
I ( ν ) = 4 Re - exp [ 2 π i ( ν - ν 0 ) τ ] × exp [ - 2 ( π τ ) 2 σ 2 ( τ ) ] d τ ,
σ 2 ( τ ) = 0 S f ( f ) sin 2 ( π f τ ) ( π f τ ) 2 d f .
σ y 2 ( τ ) = 2 ν 0 2 0 S f ( f ) sin 4 ( π f τ ) ( π f τ ) 2 d f .

Metrics