Abstract

We report the observation of electromagnetically induced phase matching in collisionally broadened Pb vapor. At a critical intensity at which the Rabi frequency of a dressing 1064-nm laser overcomes the Doppler broadening of the vapor, the generated four-frequency-mixing signal at 283 nm increases in a steplike manner by a factor of 59.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
    [Crossref] [PubMed]
  2. S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
    [Crossref] [PubMed]
  3. S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
    [Crossref] [PubMed]
  4. M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
    [Crossref] [PubMed]
  5. K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
    [Crossref] [PubMed]
  6. S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986); S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 66, 1797 (1991); .
    [Crossref] [PubMed]
  7. K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
    [Crossref] [PubMed]
  8. J. E. Field, Department of Electrical Engineering, Stanford University, Stanford, Calif. 94305 (personal communication, 1992).

1992 (2)

S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
[Crossref] [PubMed]

M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[Crossref] [PubMed]

1991 (2)

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[Crossref] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
[Crossref] [PubMed]

1990 (2)

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[Crossref] [PubMed]

1986 (1)

S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986); S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 66, 1797 (1991); .
[Crossref] [PubMed]

Agarwal, G. S.

S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986); S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 66, 1797 (1991); .
[Crossref] [PubMed]

Field, J. E.

S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
[Crossref] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

J. E. Field, Department of Electrical Engineering, Stanford University, Stanford, Calif. 94305 (personal communication, 1992).

Fleischhauer, M.

M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[Crossref] [PubMed]

Hahn, K H.

K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[Crossref] [PubMed]

Hahn, K. H.

J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
[Crossref] [PubMed]

Hakuta, K.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
[Crossref] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[Crossref] [PubMed]

Imamoglu, A.

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Kasapi, A.

S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
[Crossref] [PubMed]

King, D. A.

K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[Crossref] [PubMed]

Marmet, L.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[Crossref] [PubMed]

Stoicheff, B. P.

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[Crossref] [PubMed]

Tewari, S. P.

S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986); S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 66, 1797 (1991); .
[Crossref] [PubMed]

Phys. Rev. A (1)

S. E. Harris, J. E. Field, A. Kasapi, Phys. Rev. A 46, R29 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

M. O. Scully, M. Fleischhauer, Phys. Rev. Lett. 69, 1360 (1992).
[Crossref] [PubMed]

K. Hakuta, L. Marmet, B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[Crossref] [PubMed]

S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986); S. P. Tewari, G. S. Agarwal, Phys. Rev. Lett. 66, 1797 (1991); .
[Crossref] [PubMed]

K H. Hahn, D. A. King, S. E. Harris, Phys. Rev. Lett. 65, 2777 (1990).
[Crossref] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3062 (1991).J. E. Field, K. H. Hahn, S. E. Harris, Phys. Rev. Lett. 67, 3733(E) (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).
[Crossref] [PubMed]

Other (1)

J. E. Field, Department of Electrical Engineering, Stanford University, Stanford, Calif. 94305 (personal communication, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy-level diagram of atomic Pb for the four-frequency-mixing process. The inset shows the dressed atomic states as seen by the generated 283-nm light.

Fig. 2
Fig. 2

Schematic of the experimental apparatus.

Fig. 3
Fig. 3

Conversion efficiency (283-nm power density/1064-nm power density) versus 1064-nm power density, where unity on the vertical scale corresponds to an absolute conversion efficiency of 4.1 × 10−10. The 1064-nm power density is shown in absolute units on the lower scale and, on the upper scale, in units of Rabi frequency divided by twice the square root of the product of the Doppler width and the 6-cm−1 detuning. The theoretical curve (solid curve) is in absolute units and is not fitted.

Fig. 4
Fig. 4

Conversion efficiency (283-nm power density/606-nm power density) versus 606-nm power density.

Metrics