Abstract

By optimizing the intracavity dispersion compensation in a self-mode-locked Ti:sapphire laser, we have generated pulses of 10.95-fs duration. Dispersion within the laser cavity is reduced by use of a short 4.5-mm highly doped Ti:sapphire crystal and fused-silica prisms. The output from the laser has an average power of as much as 500 mW, with a wavelength centered at 780 nm and a bandwidth of 62 nm. Our results demonstrate that the exceptionally broad bandwidth of Ti:sapphire can be utilized to generate pulses that, to our knowledge, are shorter than has been possible with any other type of laser material to date.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. C. P. Huang, H. C. Kapteyn, J. W. McIntosh, M. M. Murnane, Opt. Lett. 17, 139 (1992).
    [CrossRef] [PubMed]
  3. C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]
  4. J. M. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, A. G. Jacobson, Opt. Lett. 17, 1608 (1992).
    [CrossRef] [PubMed]
  5. B. Lemoff, C. Barty, Opt. Lett. 17, 1367 (1992).
    [CrossRef] [PubMed]
  6. P. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. Schmidt, Opt. Lett. 18, 54 (1993).
    [CrossRef] [PubMed]
  7. B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992).
    [CrossRef] [PubMed]
  8. More comprehensive construction details for this laser are available on request.
  9. We note that in a previous publication3 the value quoted for the LaKL21 prism separation (51 cm) is incorrect; the original prisms used in this setup were manufactured with a smaller apex angle than we specified. This required us to operate at longer prism separations than expected. Subsequent replacement of the prisms with Brewster-angle versions resulted in identical performance from the laser but at a reduced prism separation of 38 cm. This resulted in a reduction in the calculated cubic phase from −890 to −560 fs3.
  10. H. A. Haus, J. D. Moores, L. E. Nelson, Opt. Lett. 18, 51 (1993).
    [CrossRef] [PubMed]
  11. P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
    [CrossRef]
  12. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
    [CrossRef] [PubMed]
  13. K. D. Li, W. H. Knox, N. M. Pearson, Opt. Lett. 14, 450 (1989).
    [CrossRef] [PubMed]
  14. W. H. Knox, N. M. Pearson, K. D. Li, C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
    [CrossRef] [PubMed]

1993 (2)

1992 (5)

1991 (1)

1989 (1)

1988 (2)

W. H. Knox, N. M. Pearson, K. D. Li, C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
[CrossRef] [PubMed]

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

1987 (1)

Asaki, M. T.

Backus, S.

Barty, C.

Becker, P. C.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
[CrossRef] [PubMed]

Beisser, F. A.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

Brabec, T.

Brito Cruz, C. H.

Curley, P.

Fork, R. L.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
[CrossRef] [PubMed]

Fragnito, H. L.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

Fujimoto, J. G.

Haus, H. A.

Hirlimann, C. A.

Huang, C. P.

Jacobson, A. G.

Jacobson, J. M.

Kapteyn, H. C.

Kean, P. N.

Knox, W. H.

Krausz, F.

Lemoff, B.

Li, K. D.

McIntosh, J. W.

Moores, J. D.

Murnane, M. M.

Naganuma, K.

Nathel, H.

Nelson, L. E.

Pearson, N. M.

Proctor, B.

Schmidt, A.

Shank, C. V.

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
[CrossRef] [PubMed]

Sibbett, W.

Spence, D. E.

Spielmann, C.

Wintner, E.

Wise, F.

Appl. Phys. Lett. (1)

P. C. Becker, H. L. Fragnito, R. L. Fork, F. A. Beisser, C. V. Shank, Appl. Phys. Lett. 54, 411 (1988).
[CrossRef]

Opt. Lett. (11)

Other (2)

More comprehensive construction details for this laser are available on request.

We note that in a previous publication3 the value quoted for the LaKL21 prism separation (51 cm) is incorrect; the original prisms used in this setup were manufactured with a smaller apex angle than we specified. This required us to operate at longer prism separations than expected. Subsequent replacement of the prisms with Brewster-angle versions resulted in identical performance from the laser but at a reduced prism separation of 38 cm. This resulted in a reduction in the calculated cubic phase from −890 to −560 fs3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectrum of the Ti:sapphire laser output from the undispersed end of the laser. The FWHM is 61.8 nm, with a center wavelength of 780 nm.

Fig. 2
Fig. 2

Autocorrelation trace of a 10.9-fs pulse. Also shown is a sech2 (t) fit to the data.

Fig. 3
Fig. 3

Autocorrelation trace of 10.3-fs pulse, with wings on each side. Also shown is a sech2(t) fit to the data.

Metrics