Abstract

We report what is to our knowledge the first demonstration of a continuous-wave singly resonant optical parametric oscillator based on potassium titanyl phosphate. The pump source used is a single-frequency resonantly doubled Nd:YAG laser. By double passing the pump through the crystal, we achieved a minimum oscillation threshold of 1.4 W. With 3.2 W of incident pump power, a maximum 1.07 W of nonresonant idler power was generated. Spectral measurement reveals that the singly resonant optical parametric oscillator operates consistently in a single axial mode with much relaxed axial mode hop tolerance to cavity length and pump-frequency fluctuations compared with doubly resonant optical parametric oscillators previously demonstrated.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Nabors, R. C. Eckardt, W. J. Kozlovsky, R. L. Byer, Opt. Lett. 14, 1134 (1989).
    [CrossRef] [PubMed]
  2. D. Lee, N. C. Wong, Opt. Lett. 17, 13 (1992).
    [CrossRef] [PubMed]
  3. R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
    [CrossRef]
  4. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
    [CrossRef]
  5. S. E. Harris, Proc IEEE 57, 2096 (1969).
    [CrossRef]
  6. For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
    [CrossRef]
  7. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, Opt. Lett. 14, 1189 (1989).
    [CrossRef] [PubMed]
  8. S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
    [CrossRef] [PubMed]
  9. K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
    [CrossRef]
  10. S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
    [CrossRef]
  11. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
    [CrossRef]
  12. H. Vanherzeele, J. D. Bierlein, Opt. Lett. 17, 982 (1992).
    [CrossRef] [PubMed]
  13. J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
    [CrossRef]
  14. K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
    [CrossRef] [PubMed]

1992

1991

1990

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

1989

1982

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

1973

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

1970

J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
[CrossRef]

1969

S. E. Harris, Proc IEEE 57, 2096 (1969).
[CrossRef]

Ashkin, A.

J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
[CrossRef]

Bierlein, J. D.

Bjorkholm, J.

J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
[CrossRef]

Bosenberg, W. R.

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Byer, R. L.

Cheng, L. K.

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Day, T.

Eckardt, R. C.

Falk, J.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Farinas, A. D.

Feigelson, R. S.

Guha, S.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Gustafson, E. K.

Harris, S. E.

S. E. Harris, Proc IEEE 57, 2096 (1969).
[CrossRef]

Kato, K.

K. Kato, M. Masutani, Opt. Lett. 17, 178 (1992).
[CrossRef] [PubMed]

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Kozlovsky, W. J.

Lane, R. J.

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Lee, D.

Lrkachi, T.

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

Masutani, M.

Nabors, C. D.

Pohalski, C. C.

Raymakers, R. J.

Route, R. K.

Smith, R. G.

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
[CrossRef]

Tang, C. L.

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Vanherzeele, H.

Wong, N. C.

Wu, F. J.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Yang, S. T.

IEEE J. Quantum Electron.

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, IEEE J. Quantum Electron. 26, 922 (1990).
[CrossRef]

J. Bjorkholm, A. Ashkin, R. G. Smith, IEEE J. Quantum Electron. QE-6, 797 (1970).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc IEEE

S. E. Harris, Proc IEEE 57, 2096 (1969).
[CrossRef]

Proc. IEEE

For a recent review of pulsed SRO’s, seeC. L. Tang, W. R. Bosenberg, T. Lrkachi, R. J. Lane, L. K. Cheng, Proc. IEEE 80, 365 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

KTP SRO experimental setup. The spacing between the two curved mirrors is 8.2 cm. The distance from mirror M1 to mirror M3 is 14 cm. Both the pump mirror and mirror M2 are mounted upon piezoelectric transducers. The LiNbO3 prism with an apex angle of 48.3° has its c axis coming out of the page.

Fig. 2
Fig. 2

Double-pass threshold reduction with both pump and idler nonresonantly reflected as a function of relative phase difference Δϕ (solid curve). At each Δϕ, ΔkL is optimized to yield maximum threshold reduction. For Δϕ varying between −π and π, the optimum ΔkL varies between +2.33 and −2.33 rad (dashed curve).

Fig. 3
Fig. 3

SRO output as the pump mirror position is swept. Mirror M2 is held fixed. A pump-phase shift of 2π corresponds to a pump-mirror motion of 266 nm.

Fig. 4
Fig. 4

SRO nonresonant idler output power and power conversion efficiency versus input pump power. The filled circles refer to the generated idler power, and the open circles represent idler power conversion efficiency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th - DP = P th - SP [ 1 + R p + 2 R i R p cos ( Δ ϕ + Δ k L ) ] × [ sin 2 ( Δ k L / 2 ) ( Δ k L / 2 ) 2 ] - 1 ,

Metrics