Abstract

Photorefractive holograms stored in Sr0.75Ba0.25Nb2O6 crystals are electrically fixed at room temperature. The fixed holograms can be read out directly or after a positive-voltage pulse is applied that can dramatically enhance the diffraction efficiency. Single gratings as well as images are recorded and fixed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
    [CrossRef]
  2. L. Arizmendi, J. Appl. Phys. 65, 423 (1989).
    [CrossRef]
  3. G. Montemezzani, P. Guinter, J. Opt. Soc. Am. B 7, 2323 (1990).
    [CrossRef]
  4. D. Kirillov, J. Feinberg, Opt. Lett. 16, 1520 (1991).
    [CrossRef] [PubMed]
  5. F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
    [CrossRef]
  6. F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
    [CrossRef]
  7. F. Micheron, J. Trotier, Ferroelectrics 8, 441 (1974).
    [CrossRef]
  8. V. Leyva, A. Agranat, A. Yariv, Opt. Lett. 16, 554 (1991).
    [CrossRef] [PubMed]
  9. G. S. Trofimov, S. I. Stepanov, Sov. Tech. Phys. Lett. 10, 282 (1984).
  10. J. P. Wilde, L. Hesselink, Opt. Lett. 17, 853 (1992).
    [CrossRef] [PubMed]
  11. S. Orlov, Y. Qiao, D. Psaltis, “Dynamic compensation of fixed gratings in photorefractive media,” submitted to J. Opt. Soc. Am. B.

1992 (1)

1991 (2)

1990 (1)

1989 (1)

L. Arizmendi, J. Appl. Phys. 65, 423 (1989).
[CrossRef]

1984 (1)

G. S. Trofimov, S. I. Stepanov, Sov. Tech. Phys. Lett. 10, 282 (1984).

1974 (1)

F. Micheron, J. Trotier, Ferroelectrics 8, 441 (1974).
[CrossRef]

1973 (1)

F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

1972 (1)

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Agranat, A.

Amodei, J. J.

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Arizmendi, L.

L. Arizmendi, J. Appl. Phys. 65, 423 (1989).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Feinberg, J.

Guinter, P.

Hesselink, L.

Kirillov, D.

Leyva, V.

Micheron, F.

F. Micheron, J. Trotier, Ferroelectrics 8, 441 (1974).
[CrossRef]

F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Montemezzani, G.

Orlov, S.

S. Orlov, Y. Qiao, D. Psaltis, “Dynamic compensation of fixed gratings in photorefractive media,” submitted to J. Opt. Soc. Am. B.

Psaltis, D.

S. Orlov, Y. Qiao, D. Psaltis, “Dynamic compensation of fixed gratings in photorefractive media,” submitted to J. Opt. Soc. Am. B.

Qiao, Y.

S. Orlov, Y. Qiao, D. Psaltis, “Dynamic compensation of fixed gratings in photorefractive media,” submitted to J. Opt. Soc. Am. B.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

Stepanov, S. I.

G. S. Trofimov, S. I. Stepanov, Sov. Tech. Phys. Lett. 10, 282 (1984).

Trofimov, G. S.

G. S. Trofimov, S. I. Stepanov, Sov. Tech. Phys. Lett. 10, 282 (1984).

Trotier, J.

F. Micheron, J. Trotier, Ferroelectrics 8, 441 (1974).
[CrossRef]

Wilde, J. P.

Yariv, A.

Appl. Phys. Lett. (3)

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[CrossRef]

F. Micheron, G. Bismuth, Appl. Phys. Lett. 23, 71 (1973).
[CrossRef]

F. Micheron, G. Bismuth, Appl. Phys. Lett. 20, 79 (1972).
[CrossRef]

Ferroelectrics (1)

F. Micheron, J. Trotier, Ferroelectrics 8, 441 (1974).
[CrossRef]

J. Appl. Phys. (1)

L. Arizmendi, J. Appl. Phys. 65, 423 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Sov. Tech. Phys. Lett. (1)

G. S. Trofimov, S. I. Stepanov, Sov. Tech. Phys. Lett. 10, 282 (1984).

Other (1)

S. Orlov, Y. Qiao, D. Psaltis, “Dynamic compensation of fixed gratings in photorefractive media,” submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical setup.

Fig. 2
Fig. 2

Diffracted light as a function of time for fixing with a negative-voltage pulse (Λ = 11.6 μm). The transmitted light power in the absence of the grating is 1.1μW. A, Hologram recording begins. B, Negative pulse is applied. C, End of negative pulse. D, Optical erasure begins. E, Erasing beam is blocked and positive-voltage pulse is applied. F, End of positive pulse. G, Optical erasure begins.

Fig. 3
Fig. 3

Diffracted light as a function of time for fixing with a constant negative voltage during recording (Λ = 11.6 μm). The transmitted light power in the absence of the grating is 1.1 μW. A, Hologram recording begins and negative voltage is applied. B, Negative voltage is removed and recording beams are blocked. C, Optical erasure begins. D, Positive-voltage pulse is applied (probe beam is blocked). E, Optical erasure begins.

Fig. 4
Fig. 4

Diffraction efficiency as a function of grating spacing for (a) the fixed grating and (b) the revealed grating.

Fig. 5
Fig. 5

(a) Reconstruction of the recorded hologram and (b) reconstruction of the fixed hologram.

Fig. 6
Fig. 6

Cyclic fixing and revealing of the stored hologram (Λ = 20.2 μm), with the erasing beam off during the entire process. A, Positive (revealing) pulse is applied, with V = +1 kV. B, Negative (fixing) pulse is applied, with V = −1 kV.

Metrics