Abstract

We demonstrate a compact real-time optical image correlator using diode lasers and a semi-insulating GaAs/AlGaAs multiple-quantum-well (SI-MQW) device as the holographic element. With only 3 mW of power incident upon the SI-MQW device, the correlation is obtained in 1 μs and can be erased in as fast as 2 μs, which presents the possibility of a system capable of 3 × 105 correlations/s. We also show that images can be stored for a controllable length of time (2–25 μs), which presents possibilities for the use of the SI-MQW device as a data or image buffer memory.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
    [CrossRef]
  2. D. M. Pepper, J. AuYeung, D. Fekete, A. Yariv, Opt. Lett. 3, 7 (1978).
    [CrossRef] [PubMed]
  3. J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
    [CrossRef]
  4. H. Rajbenbach, S. Bann, Ph. Réfrégier, P. Joffre, J.-P. Huignard, H.-S. Buchkremer, A. Skov Jensen, E. Rasmussen, K.-H. Brenner, G. Lohman, Appl. Opt. 31, 5666 (1992).
    [CrossRef] [PubMed]
  5. J. H. Hong, T. Y. Chang, Opt. Lett. 16, 333 (1991).
    [CrossRef] [PubMed]
  6. D. Casasent, D. Psaltis, Appl. Opt. 15, 1795 (1976).
    [CrossRef] [PubMed]
  7. H. Stark, Applications of Optical Fourier Transform (Academic, Orlando, Fla., 1982).
  8. P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
    [CrossRef]
  9. G. Gheen, L.-J. Cheng, Appl. Opt. 27, 2756 (1988).
    [CrossRef] [PubMed]
  10. R. A. Athale, K. Raj, Opt. Lett. 17, 880 (1992).
    [CrossRef] [PubMed]
  11. A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).
  12. A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).
  13. L.-J. Cheng, A. Partovi, Appl. Opt. 27, 1760 (1988).
    [CrossRef] [PubMed]
  14. P. E. Gianino, J. L. Horner, Opt. Eng. 23, 695 (1984).
  15. D. Psaltis, M. A. Neifeld, A. Yamamura, Opt. Lett. 14, 429 (1989).
    [CrossRef] [PubMed]
  16. T. M. Slagle, K. Wagner, Opt. Lett. 17, 1164 (1992).
    [CrossRef] [PubMed]

1993 (1)

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

1992 (3)

1991 (1)

1989 (1)

1988 (2)

1986 (1)

P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
[CrossRef]

1984 (1)

P. E. Gianino, J. L. Horner, Opt. Eng. 23, 695 (1984).

1980 (1)

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

1978 (1)

1976 (1)

1964 (1)

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Athale, R. A.

AuYeung, J.

Bann, S.

Brenner, K.-H.

Buchkremer, H.-S.

Casasent, D.

Chang, T. Y.

Cheng, L.-J.

Chiu, T. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Connors, L. M.

P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
[CrossRef]

Fekete, D.

Foote, P. D.

P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
[CrossRef]

Gheen, G.

Gianino, P. E.

P. E. Gianino, J. L. Horner, Opt. Eng. 23, 695 (1984).

Glass, A. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Hall, T. J.

P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
[CrossRef]

Hong, J. H.

Horner, J. L.

P. E. Gianino, J. L. Horner, Opt. Eng. 23, 695 (1984).

Huignard, J.-P.

Joffre, P.

Knox, W. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Lohman, G.

Neifeld, M. A.

O’Bryan, H. M.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Olson, D. H.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

Partovi, A.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

L.-J. Cheng, A. Partovi, Appl. Opt. 27, 1760 (1988).
[CrossRef] [PubMed]

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Pepper, D. M.

Psaltis, D.

Raj, K.

Rajbenbach, H.

Rasmussen, E.

Réfrégier, Ph.

Skov Jensen, A.

Slagle, T. M.

Stark, H.

H. Stark, Applications of Optical Fourier Transform (Academic, Orlando, Fla., 1982).

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Wagner, K.

White, J. O.

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

Yamamura, A.

Yariv, A.

Zydzik, G. J.

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

Appl. Opt. (4)

Appl. Phys. Lett. (2)

A. Partovi, A. M. Glass, D. H. Olson, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, Appl. Phys. Lett. 62, 466 (1993).

J. O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980).
[CrossRef]

IEEE Trans. Inform. Theory (1)

A. Vander Lugt, IEEE Trans. Inform. Theory IT-10, 139 (1964).
[CrossRef]

Opt. Eng. (1)

P. E. Gianino, J. L. Horner, Opt. Eng. 23, 695 (1984).

Opt. Laser Technol. (1)

P. D. Foote, T. J. Hall, L. M. Connors, Opt. Laser Technol. 18, 39 (1986).
[CrossRef]

Opt. Lett. (5)

Other (2)

A. Partovi, A. M. Glass, G. J. Zydzik, H. M. O’Bryan, T. H. Chiu, W. H. Knox, “Effect of carrier escape time on the performance of semi-insulating multiple quantum well photorefractive devices,” Appl. Phys. Lett. (to be published).

H. Stark, Applications of Optical Fourier Transform (Academic, Orlando, Fla., 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for the joint Fourier transform correlator. PBS, polarizing beam splitter.

Fig. 2
Fig. 2

(a) Surface plot of a portion of the output of the CCD camera in response to an input image shown in (b) consisting of the handwritten number 242 to be correlated with 2. Note that the upper-left 2 is different from the bottom 2 and that its cross-correlation peak is ~50% of the autocorrelation peak between the similar upper-right 2 and the bottom 2. No cross-correlation peak is observed for the 4.

Fig. 3
Fig. 3

Response of the correlator system to a 2-μs-long write laser pulse: 1, the write beam; 2, the applied voltage; 3, the correlation peak. The read laser is cw and monitors the growth and decay of the correlation pattern for (a) a long storage time obtained with a 35-μs voltage pulse, (b) fast erasure obtained with a 2-μs-long voltage pulse. The voltage applied is negative at time 0 for both cases. Its polarity is reversed for the duration of the write/storage cycle. By varying the duration of this pulse any storage times between 2 and 25 μs can be obtained.

Metrics