Abstract

A regeneratively initiated self-mode-locked chromium-doped forsterite laser operated at 3.5 °C is described. By employing intracavity negative-group-velocity dispersion compensation, nearly transform-limited femtosecond pulses of 48-fs (FWHM) duration were generated with average TEM00 output powers of 380 mW at 1.23 μm. Regenerative initiation provides improvement in the output stability and ease of operation compared with fixed-frequency acousto-optic modulators. By tuning the mode-locked laser in the range 1.21–1.26 μm, estimated values for forsterite dispersion constants have also been obtained for the first time to our knowledge. The demonstrated power and stability open the door to applications such as efficient second-harmonic generation.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. J. D. Kafka, M. L. Watts, J. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
    [CrossRef]
  3. D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett, Opt. Lett. 16, 1762 (1991).
    [CrossRef] [PubMed]
  4. F. Krausz, Ch. Spielmann, T. Brabec, E. Winter, A. J. Schmidt, Opt. Lett. 17, 204 (1992).
    [CrossRef] [PubMed]
  5. P. F. Curley, A. I. Ferguson, Opt. Lett. 16, 1016 (1991).
    [CrossRef] [PubMed]
  6. A. Seas, V. Petričević, R. R. Alfano, Opt. Lett. 16, 1668 (1991).
    [CrossRef] [PubMed]
  7. A. Seas, V. Petričević, R. R. Alfano, Opt. Lett. 17, 937 (1992).
    [CrossRef] [PubMed]
  8. A. Sennaroglu, T. J. Carrig, C. R. Pollock, Opt. Lett. 17, 1216 (1992).
    [CrossRef] [PubMed]
  9. W. H. Knox, Opt. Lett. 17, 514 (1992).
    [CrossRef] [PubMed]
  10. A. E. Siegman, D. J. Kuizenga, Optoelectronics 6, 43 (1974).
  11. R. L. Fork, C. H. B. Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
    [CrossRef] [PubMed]
  12. C. P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]

1992 (6)

1991 (4)

1987 (1)

1974 (1)

A. E. Siegman, D. J. Kuizenga, Optoelectronics 6, 43 (1974).

Alfano, R. R.

Asaki, M. T.

Backus, S.

Becker, P. C.

Brabec, T.

Carrig, T. J.

Cruz, C. H. B.

Curley, P. F.

Evans, J. M.

Ferguson, A. I.

Fork, R. L.

Huang, C. P.

Kafka, J. D.

J. D. Kafka, M. L. Watts, J. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[CrossRef]

Kapteyn, H. C.

Kean, P. N.

Knox, W. H.

Krausz, F.

Kuizenga, D. J.

A. E. Siegman, D. J. Kuizenga, Optoelectronics 6, 43 (1974).

Murnane, M. M.

Nathel, H.

Petricevic, V.

Pieterse, J. J.

J. D. Kafka, M. L. Watts, J. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[CrossRef]

Pollock, C. R.

Schmidt, A. J.

Seas, A.

Sennaroglu, A.

Shank, C. V.

Sibbett, W.

Siegman, A. E.

A. E. Siegman, D. J. Kuizenga, Optoelectronics 6, 43 (1974).

Sleat, W. E.

Spence, D. E.

Spielmann, Ch.

Watts, M. L.

J. D. Kafka, M. L. Watts, J. J. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[CrossRef]

Winter, E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the regeneratively initiated self-mode-locked Cr:forsterite laser. B.S., beam splitter.

Fig. 2
Fig. 2

Noncollinear intensity autocorrelation of the regeneratively initiated self-mode-locked Cr:forsterite pulses after dispersion compensation. The pulse width (FWHM) is 48 fs.

Fig. 3
Fig. 3

Spectrum of the regeneratively initiated self-mode-locked Cr:forsterite pulses after dispersion compensation. The spectral width (FWHM) is 33.7 nm.

Metrics