Abstract

We show that extra resonances, such as those caused in frequency-domain nonlinear wave mixing by pure dephasing or laser fluctuations, can also be induced by operation in the time domain. These pulse-length-induced extra resonances arise in transient-grating experiments when the laser pulses are short enough that a steady extra be achieved during the excitation process. We show theoretically that these resonances increase in state cannot with decreasing excitation pulse length until the pulse length becomes shorter than the dephasing time strength of the medium and quote an experimental example to support this interpretation.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Rothberg, in Progress in Optics XXIV, E. Wolf, ed. (Elsevier, Amsterdam, 1987), and references therein.
  2. R. Trebino, Phys. Rev. A 38, 2921 (1988).
    [CrossRef] [PubMed]
  3. A. R. Bogdan, Y. Prior, N. Bloembergen, Opt. Lett. 6, 82 (1981).
    [CrossRef] [PubMed]
  4. Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
    [CrossRef] [PubMed]
  5. N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
    [CrossRef] [PubMed]
  6. M. S. Kumar, G. S. Agarwal, Opt. Commun. 70, 538 (1989).
    [CrossRef]
  7. R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
    [CrossRef]
  8. T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
    [CrossRef]
  9. H. Bitto, J. R. Huber, Acc. Chem. Res. 25, 65 (1992).
    [CrossRef]
  10. R. Trebino, J. T. Fourkas, in Digest of Conference on Quantum Electronics and Laser Science (Optical Society of America, Washington, D.C., 1993), paper QTuK39S. Mukamel, R. F. Loring, J. Opt. Soc. Am. B 3, 595 (1986)
    [CrossRef]
  11. T. K. Yee, T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).
    [CrossRef]
  12. A. R. Bogdan, M. W. Downer, N. Bloembergen, Opt. Lett. 6, 348 (1981).
    [CrossRef] [PubMed]

1992 (1)

H. Bitto, J. R. Huber, Acc. Chem. Res. 25, 65 (1992).
[CrossRef]

1990 (1)

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

1989 (1)

M. S. Kumar, G. S. Agarwal, Opt. Commun. 70, 538 (1989).
[CrossRef]

1988 (1)

R. Trebino, Phys. Rev. A 38, 2921 (1988).
[CrossRef] [PubMed]

1987 (1)

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

1986 (1)

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

1985 (1)

Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
[CrossRef] [PubMed]

1981 (2)

1978 (1)

T. K. Yee, T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).
[CrossRef]

Agarwal, G. S.

M. S. Kumar, G. S. Agarwal, Opt. Commun. 70, 538 (1989).
[CrossRef]

Barker, C. E.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

Bitto, H.

H. Bitto, J. R. Huber, Acc. Chem. Res. 25, 65 (1992).
[CrossRef]

Bloembergen, N.

Bogdan, A. R.

Chencinski, N.

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

Downer, M. W.

Fayer, M. D.

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Fourkas, J. T.

R. Trebino, J. T. Fourkas, in Digest of Conference on Quantum Electronics and Laser Science (Optical Society of America, Washington, D.C., 1993), paper QTuK39S. Mukamel, R. F. Loring, J. Opt. Soc. Am. B 3, 595 (1986)
[CrossRef]

Gustafson, T. K.

T. K. Yee, T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).
[CrossRef]

Huber, J. R.

H. Bitto, J. R. Huber, Acc. Chem. Res. 25, 65 (1992).
[CrossRef]

Jorter, J.

Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
[CrossRef] [PubMed]

Kumar, M. S.

M. S. Kumar, G. S. Agarwal, Opt. Commun. 70, 538 (1989).
[CrossRef]

Levine, A. M.

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

Prior, Y.

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
[CrossRef] [PubMed]

A. R. Bogdan, Y. Prior, N. Bloembergen, Opt. Lett. 6, 82 (1981).
[CrossRef] [PubMed]

Rose, T. S.

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Rothberg, L.

L. Rothberg, in Progress in Optics XXIV, E. Wolf, ed. (Elsevier, Amsterdam, 1987), and references therein.

Schek, I.

Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
[CrossRef] [PubMed]

Schreiber, W. M.

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

Siegman, A. E.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

Trebino, R.

R. Trebino, Phys. Rev. A 38, 2921 (1988).
[CrossRef] [PubMed]

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

R. Trebino, J. T. Fourkas, in Digest of Conference on Quantum Electronics and Laser Science (Optical Society of America, Washington, D.C., 1993), paper QTuK39S. Mukamel, R. F. Loring, J. Opt. Soc. Am. B 3, 595 (1986)
[CrossRef]

Wäckerle, G.

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Wilson, W. L.

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Yee, T. K.

T. K. Yee, T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).
[CrossRef]

Acc. Chem. Res. (1)

H. Bitto, J. R. Huber, Acc. Chem. Res. 25, 65 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

J. Chem. Phys. (1)

T. S. Rose, W. L. Wilson, G. Wäckerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Opt. Commun. (1)

M. S. Kumar, G. S. Agarwal, Opt. Commun. 70, 538 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (4)

R. Trebino, Phys. Rev. A 38, 2921 (1988).
[CrossRef] [PubMed]

Y. Prior, I. Schek, J. Jorter, Phys. Rev. A 31, 3775 (1985).
[CrossRef] [PubMed]

N. Chencinski, W. M. Schreiber, A. M. Levine, Y. Prior, Phys. Rev. A 42, 2839 (1990).
[CrossRef] [PubMed]

T. K. Yee, T. K. Gustafson, Phys. Rev. A 18, 1597 (1978).
[CrossRef]

Other (2)

L. Rothberg, in Progress in Optics XXIV, E. Wolf, ed. (Elsevier, Amsterdam, 1987), and references therein.

R. Trebino, J. T. Fourkas, in Digest of Conference on Quantum Electronics and Laser Science (Optical Society of America, Washington, D.C., 1993), paper QTuK39S. Mukamel, R. F. Loring, J. Opt. Soc. Am. B 3, 595 (1986)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TG data taken in a low-pressure Na cell by exciting and probing the D1 line. The inset power spectrum shows frequency components at 1.77 GHz (ground-state hyperfine splitting) and 189 MHz (excited-state hyperfine splitting), as well as cross terms that arise in |(3)|2.

Fig. 2
Fig. 2

(a) Feynman diagrams for extra resonances between initially unpopulated excited states. (b) Energy-level diagram and laser frequencies used in the calculations. (The dashed lines represent virtual energy levels split by Ecd.)

Fig. 3
Fig. 3

PLIERS strength versus dΓe for square pulses (solid curves) and 1 + cos pulse (dashed curves) for various values of Δ; Γe is 1011/s.

Fig. 4
Fig. 4

Square-pulse PLIERS strength versus Γev for dΓe = 0.1.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P ( 3 ) - t ob E l ( t 3 ) exp [ - i Ω 3 ( t ob - t 3 ) ] d t 3 × - t 3 E k * ( t 2 ) exp [ - i Ω 2 ( t 3 - t 2 ) ] d t 2 × - t 2 E j ( t 1 ) exp [ - i Ω 1 ( t 2 - t 1 ) ] d t 1 ,
P ( 3 ) 1 + i [ ( Γ v - 2 Γ e ) / ( ω c d - ω 1 + ω 2 - i Γ v ) ] ( ω a d + ω 2 - i Γ e ) ( ω c a - ω 1 - i Γ e ) ,
A exp [ - Γ v ( τ - d / 2 ) ] / [ d 2 ( Δ 2 + Γ e 2 ) ] ,
B = ( Γ e / Γ v ) k 1 + ( k 2 / k 3 ) [ exp ( - Γ v d ) - cos ( Δ d ) exp ( - Γ e d ) ] - ( k 4 / k 3 ) sin ( Δ d ) exp ( - Γ e d ) ,
C = - ( Δ / Γ v ) k 1 + ( k 2 / k 3 ) sin ( Δ d ) exp ( - Γ v d ) + ( k 4 / k 3 ) [ exp ( - Γ v d ) - cos ( Δ d ) exp ( - Γ e d ) ] ,

Metrics