Abstract

Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Y. Sirat, D. Psaltis, Opt. Lett. 10, 4 (1985).
    [Crossref] [PubMed]
  2. D. Charlot, “Holographie conoscopique, principe et reconstructions numériques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris1987).
  3. G. Y. Sirat, J. Opt. Soc. Am. A 9, 70, 84 (1992).
    [Crossref]
  4. D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).
  5. A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).
    [Crossref]
  6. G. Cochran, J. Opt. Soc. Am. 56, 1513 (1966).
    [Crossref]
  7. A. Kozma, N. Massey, Appl. Opt. 8, 393 (1969).
    [Crossref] [PubMed]
  8. L. M. Mugnier, G. Y. Sirat, Opt. Lett. 17, 294 (1992).
    [Crossref] [PubMed]
  9. F. J. Harris, Proc. IEEE 66, 51 (1978).
    [Crossref]

1992 (2)

1990 (1)

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

1985 (1)

1978 (1)

F. J. Harris, Proc. IEEE 66, 51 (1978).
[Crossref]

1969 (1)

1966 (1)

1965 (1)

Charlot, D.

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

D. Charlot, “Holographie conoscopique, principe et reconstructions numériques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris1987).

Cochran, G.

Harris, F. J.

F. J. Harris, Proc. IEEE 66, 51 (1978).
[Crossref]

Kozma, A.

Lohmann, A. W.

Massey, N.

Mugnier, L. M.

L. M. Mugnier, G. Y. Sirat, Opt. Lett. 17, 294 (1992).
[Crossref] [PubMed]

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

Psaltis, D.

Sirat, G. Y.

G. Y. Sirat, J. Opt. Soc. Am. A 9, 70, 84 (1992).
[Crossref]

L. M. Mugnier, G. Y. Sirat, Opt. Lett. 17, 294 (1992).
[Crossref] [PubMed]

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

G. Y. Sirat, D. Psaltis, Opt. Lett. 10, 4 (1985).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

G. Y. Sirat, J. Opt. Soc. Am. A 9, 70, 84 (1992).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

F. J. Harris, Proc. IEEE 66, 51 (1978).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

Other (1)

D. Charlot, “Holographie conoscopique, principe et reconstructions numériques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic experimental setup. A uniaxial crystal is sandwiched between two circular polarizers. When a point source P illuminates the system, a GZP is observed at the output.

Fig. 2
Fig. 2

Experimental setup for the acquisition of two-dimensional objects.

Fig. 3
Fig. 3

Numerical processing of the recorded hologram FT, Fourier transform.

Fig. 4
Fig. 4

Object (three-bar resolution target) as seen directly by the CCD camera.

Fig. 5
Fig. 5

(a) Real and (b) imaginary parts of the recorded hologram.

Fig. 6
Fig. 6

(a) Real and (b) imaginary parts of the numerical reconstruction.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R c + ( x , y ) = 1 2 { 1 + cos [ π f r ( x 2 + y 2 ) ] } = 1 2 + 1 4 exp [ i π f r ( x 2 + y 2 ) ] + 1 4 exp [ i π f r ( x 2 + y 2 ) ] ,
R e ( x , y ) = exp [ i π f r ( x 2 + y 2 ) ] .
H = I R e .
R ˜ e ( μ , ν ) = i f r exp [ i π f r ( μ 2 + ν 2 ) ] .
H R e * = I R e R e * = I 1 f r 2 δ = 1 f r 2 I .
R ˜ e R ˜ e 1 f r 2 [ 1 + i π ( f r f r 2 ) f r 2 ( μ 2 + ν 2 ) ] .
H ( x , y ) = H R e ( x , y ) = 1 f r 2 I ( x , y ) + i ( f r f r ) 4 π f r 4 Δ I ( x , y ) ,
F = f r R 2 .
F N / 4 .

Metrics