Abstract

We show that intracavity group-velocity dispersion compensation with the use of prisms composed of conventional optical materials can be accomplished while simultaneously eliminating the round-trip cavity cubic phase. The ability to compensate perfectly both second- and third-order dispersion exists for pulses whose central wavelengths lie within a range that depends on the prism and laser rod materials as well as on the prism angles. In the case of Ti:sapphire and Cr:LiSrAlF6 lasers, Brewster prisms composed of readily available materials can be used to compensate for both group-velocity dispersion and cubic phase over much of the respective tuning ranges.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992).
    [Crossref] [PubMed]
  2. C. P. Huang, M. T. Asaki, S. Backus, H. Nathel, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
    [Crossref] [PubMed]
  3. C. P. Huang, H. C. Kapteyn, J. W. McIntosh, M. M. Murnane, Opt. Lett. 17, 139 (1992).
    [Crossref] [PubMed]
  4. J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.
  5. J. D. Kafka, M. L. Watts, J. W. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
    [Crossref]
  6. F. Krausz, C. Spielmann, T. Brabec, E. Wintner, A. J. Schmidt, Opt. Lett. 17, 204 (1992).
    [Crossref] [PubMed]
  7. N. H. Rizvi, P. M. W. French, J. R. Taylor, Opt. Lett. 17, 279 (1992).
    [Crossref] [PubMed]
  8. K. Naganuma, K. Mogi, Opt. Lett. 16, 738 (1991).
    [Crossref] [PubMed]
  9. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 1762 (1991).
    [Crossref] [PubMed]
  10. N. H. Rizvi, P. M. W. French, J. R. Taylor, Opt. Lett. 17, 877 (1992).
    [Crossref] [PubMed]
  11. T. Brabec, C. Spielmann, F. Krausz, Opt. Lett. 17, 748 (1992).
    [Crossref] [PubMed]
  12. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [Crossref] [PubMed]
  13. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
    [Crossref] [PubMed]
  14. O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [Crossref]
  15. J. D. Kafka, T. Baer, Opt. Lett. 12, 401 (1987).
    [Crossref] [PubMed]
  16. Note that the formula for d3P/dλ3 given in Refs. 12–14 is an approximation. This derivative is used in the calculation of cubic phase. In order for it to agree exactly with our ray-tracing analysis of Brewster prisms it is necessary to use the exact form, which isd3Pdλ3=lcosβ[(24n3−48n)(dndλ)3−24dndλd2ndλ2]+lsinβ[(dndλ)3(12n6+12n4+8n3−16n2+32n)+(24n−12n3)dndλd2ndλ2+4d3ndλ3].

1992 (8)

1991 (2)

1987 (2)

1984 (2)

Asaki, M. T.

Backus, S.

Baer, T.

Barty, C. P. J.

Becker, P. C.

Brabec, T.

Brito Cruz, C. H.

Fork, R. L.

French, P. M. W.

Fujimoto, J. G.

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Gordon, J. P.

Haus, H. A.

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Huang, C. P.

Jacobson, A. G.

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Jacobson, J. M.

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Kafka, J. D.

J. D. Kafka, M. L. Watts, J. W. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

J. D. Kafka, T. Baer, Opt. Lett. 12, 401 (1987).
[Crossref] [PubMed]

Kapteyn, H. C.

Kean, P. N.

Krausz, F.

Lemoff, B. E.

Martinez, O. E.

McIntosh, J. W.

Mogi, K.

Murnane, M. M.

Naganuma, K.

K. Naganuma, K. Mogi, Opt. Lett. 16, 738 (1991).
[Crossref] [PubMed]

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Nathel, H.

Pieterse, J. W.

J. D. Kafka, M. L. Watts, J. W. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

Rizvi, N. H.

Schmidt, A. J.

Shank, C. V.

Sibbett, W.

Spence, D. E.

Spielmann, C.

Taylor, J. R.

Watts, M. L.

J. D. Kafka, M. L. Watts, J. W. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

Wintner, E.

IEEE J. Quantum Electron. (1)

J. D. Kafka, M. L. Watts, J. W. Pieterse, IEEE J. Quantum Electron. 28, 2151 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Lett. (12)

Other (2)

J. M. Jacobson, A. G. Jacobson, K. Naganuma, H. A. Haus, J. G. Fujimoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1992), paper CTuU2.

Note that the formula for d3P/dλ3 given in Refs. 12–14 is an approximation. This derivative is used in the calculation of cubic phase. In order for it to agree exactly with our ray-tracing analysis of Brewster prisms it is necessary to use the exact form, which isd3Pdλ3=lcosβ[(24n3−48n)(dndλ)3−24dndλd2ndλ2]+lsinβ[(dndλ)3(12n6+12n4+8n3−16n2+32n)+(24n−12n3)dndλd2ndλ2+4d3ndλ3].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Magnitude of round-trip cubic phase for a 1-cm e-sapphire rod and various Brewster prism pairs. Zero round-trip cavity GDD and zero intraprism path length are assumed.

Fig. 2
Fig. 2

Intraprism path length as a function of wavelength, relative to λ0p, required to null simultaneously both GDD and cubic phase in a cavity consisting of a 1-cm Tirsapphire rod and a Brewster prism pair.

Fig. 3
Fig. 3

Zero-cubic-phase wavelength as a function of round-trip cavity GDD, assuming Brewster prisms, zero intraprism path length, and a 1-cm Ti:sapphire rod.

Fig. 4
Fig. 4

Intraprism path length required to null cubic phase as a function of wavelength, assuming Brewster prisms, zero round-trip cavity GDD, and a 2-cm Cr:LiSAF rod. The dashed curve is the emission profile of Cr:LiSAF.

Tables (1)

Tables Icon

Table 1 Zero-Cubic-Phase Wavelength Ranges for Several Combinations of Brewster Prism and Laser Rod Materialsa

Metrics