Abstract

The effect of third-order dispersion on the width of mode-locked pulses is investigated analytically and numerically. The pulse width increases monotonically with increasing third-order dispersion as a consequence of the symmetric chirp introduced by it. The chirp broadens the bandwidth and lowers the gain. Computer simulations show the appearance of a resonant sideband that also taxes the gain. Reducing the filter bandwidth partially suppresses the sideband and narrows the pulse.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-P. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, H. Nathel, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]
  2. D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.
  3. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991), and references therein.
    [CrossRef]
  4. I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
    [CrossRef]
  5. H. A. Haus, J. G. Fujimoto, E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
    [CrossRef]
  6. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  7. F. W. Wise, I. A. Walmsley, C. L. Tang, Opt. Lett. 13, 129 (1988).
    [CrossRef] [PubMed]
  8. S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
    [CrossRef]
  9. F. Salin, P. Grangier, P. Georges, A. Brun, Opt. Lett. 15, 1374 (1990).
    [CrossRef] [PubMed]
  10. P. K. A. Wai, H. H. Chen, Y. C. Lee, Phys. Rev. A 41, 426 (1990).
    [CrossRef] [PubMed]
  11. D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
    [CrossRef] [PubMed]
  12. H. A. Haus, Y. Lai, J. Opt. Soc. Am. B 7, 386 (1990).
    [CrossRef]

1992

1991

1990

1989

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

1988

1986

Asaki, M. T.

Backus, S.

Brun, A.

Chen, H. H.

Chi, S.

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Christov, I. P.

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[CrossRef]

Feuget, G.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991), and references therein.
[CrossRef]

Georges, P.

Goldblatt, N.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Grangier, P.

Haus, H. A.

Huang, C.-P.

Ippen, E. P.

H. A. Haus, J. G. Fujimoto, E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991), and references therein.
[CrossRef]

Kapteyn, H. C.

Kaup, D. J.

D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
[CrossRef] [PubMed]

Lai, Y.

Lee, Y. C.

Menyuk, C. R.

Murnane, M. M.

Nathel, H.

Negus, D. K.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Salin, F.

Spinelli, L.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Tang, C. L.

Tomov, I. V.

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[CrossRef]

Wai, P. K. A.

Walmsley, I. A.

Wen, S.

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Wise, F. W.

IEEE J. Quantum Electron.

H. A. Haus, J. G. Fujimoto, E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

I. P. Christov, I. V. Tomov, Opt. Commun. 58, 338 (1986).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Phys. Rev. A

P. K. A. Wai, H. H. Chen, Y. C. Lee, Phys. Rev. A 41, 426 (1990).
[CrossRef] [PubMed]

D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
[CrossRef] [PubMed]

Other

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Topical Meeting on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Pulse width τ versus third-order dispersion k‴/(6|k″|). Theoretical curves are obtained by substituting lg and W from the simulations, and the data points are from the simulations. Solid curve and ×: 1/(LfΩf2) = 0.026, γ3 = γ5 = 0.05; dashed curve and +: 1/(LfΩf2) = 0.051, γ3 = γ5 = 0.1; dashed–dotted curve and ◇: 1/(LfΩf2) = 0.10, γ3 = γ5 = 0.2.

Fig. 2
Fig. 2

Steady-state pulse shapes: pulse amplitude versus time. Solid curve, pulse; dashed curve, sech pulse of the same FWHM. (a) k‴/(6|k″|) = 0.17, 1/(LfΩf2) = 0.051; (b) k‴/(6|k″|) = 0.49, 1/(LfΩf2) = 0.051.

Fig. 3
Fig. 3

Steady-state pulse spectrum (amplitude). Solid curve, pulse; dashed curve, sech pulse of the same spectral FWHM. (a) k‴/(6|k″|)= 0.17, 1/(LfΩf2) = 0.051; (b) k‴/(6|k″|)= 0.49, 1/(LfΩf2) = 0.051.

Fig. 4
Fig. 4

Solid curve, normalized intensity autocorrelations of the pulses in Fig. 2. Dashed curve, autocorrelation of sech pulse of the same autocorrelation FWHM.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( j ψ + j D d 2 d t 2 j δ | a | 2 ) a + ( g l + 1 L f Ω f 2 d 2 d t 2 + γ 3 | a | 2 γ 5 | a | 4 ) a + ( k 3 ! L D d 3 a d t 3 + Δ T d a d t ) = 0 .
δ = 2 π λ n 2 L K 𝒜 eff ,
a 0 ( t ) = A 0 sech ( t / τ ) ,
ψ = D τ 2 ,
δ | A 0 | 2 = 2 D τ 2 .
γ 3 | A 0 | 2 = 2 L f Ω f 2 τ 2 .
a ( t ) = A 0 sech ( t / τ ) exp [ j ϕ ( t ) ] ,
2 | D | τ 2 τ ϕ ˙ + k L D 3 ! τ 3 [ 1 6 sech 2 ( t τ ) ] + Δ T τ = 0 .
( g l ) | a | 2 d t 1 L f Ω f 2 | d a d t | 2 d t + ( γ 3 | a | 4 γ 5 | a | 6 ) d t = 0 .
1 L f Ω f 2 | d a d t | 2 d t = 1 L f Ω f 2 τ 2 W 1 3 [ 1 + 1 15 ( B Ω f τ ) 2 ] ,
B = k L D Ω f | D | .
g l 1 L f , Ω f 2 τ 2 1 3 [ 1 + 1 15 ( B Ω f τ ) 2 ] + 1 3 γ 3 W τ 2 15 γ 5 W 2 τ 2 = 0 ,
W = 2 τ | A 0 | 2 .

Metrics