Abstract

The poling of polymers leads in general to inhomogeneous polarization distributions within the polymer film. These polarization distributions affect any nonlinear-optic experiment based on second-order nonlinearities. Second-harmonic generation measurements are presented for a partially poled ferroelectric polyvinylidene fluoride film. By partial poling, we mean that the film is polarized only within a part of the film thickness. The measured angle-dependent second-harmonic signal is explained only if the polarization distribution as measured by the piezoelectric pressure pulse technique is taken into account.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Ulrich, Mol. Cryst. Liq. Cryst. 160, 1 (1988).
  2. M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
    [CrossRef]
  3. G. M. Sessler, IEEE Trans. Electr. Insul. 24, 395 (1989).
    [CrossRef]
  4. E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
    [CrossRef]
  5. S. Bauer, IEEE Trans. Electr. Insul. 27, 849 (1992).
    [CrossRef]
  6. W. Eisenmenger, M. Haardt, Solid State Commun. 41, 917 (1982).
    [CrossRef]
  7. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).
  8. B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
    [CrossRef]
  9. P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
    [CrossRef]
  10. G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
    [CrossRef]
  11. S. Bauer, B. Ploss, Ferroelectrics 118, 435 (1991).
    [CrossRef]
  12. A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
    [CrossRef]

1992 (1)

S. Bauer, IEEE Trans. Electr. Insul. 27, 849 (1992).
[CrossRef]

1991 (1)

S. Bauer, B. Ploss, Ferroelectrics 118, 435 (1991).
[CrossRef]

1990 (1)

M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
[CrossRef]

1989 (3)

G. M. Sessler, IEEE Trans. Electr. Insul. 24, 395 (1989).
[CrossRef]

E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
[CrossRef]

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

1988 (1)

D. R. Ulrich, Mol. Cryst. Liq. Cryst. 160, 1 (1988).

1982 (2)

G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
[CrossRef]

W. Eisenmenger, M. Haardt, Solid State Commun. 41, 917 (1982).
[CrossRef]

1978 (1)

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

1977 (1)

P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
[CrossRef]

Bauer, S.

S. Bauer, IEEE Trans. Electr. Insul. 27, 849 (1992).
[CrossRef]

S. Bauer, B. Ploss, Ferroelectrics 118, 435 (1991).
[CrossRef]

Berge, B.

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

Bihler, E.

E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
[CrossRef]

Bjorklund, G. C.

M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
[CrossRef]

Broadhurst, M. G.

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

Davis, G. T.

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

deReggi, A. S.

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

Dreyfus, G.

P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
[CrossRef]

Eich, M.

M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
[CrossRef]

Eisenmenger, W.

E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
[CrossRef]

W. Eisenmenger, M. Haardt, Solid State Commun. 41, 917 (1982).
[CrossRef]

Gerhard, R.

G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
[CrossRef]

Guttman, C. M.

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

Haardt, M.

W. Eisenmenger, M. Haardt, Solid State Commun. 41, 917 (1982).
[CrossRef]

Holdik, K.

E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
[CrossRef]

Lajzerowicz, J.

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

Laurenceau, P.

P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
[CrossRef]

Legrand, J. F.

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

Lewiner, J.

P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
[CrossRef]

Midwinter, J. E.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Mopsik, F. I.

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

Ploss, B.

S. Bauer, B. Ploss, Ferroelectrics 118, 435 (1991).
[CrossRef]

Sessler, G. M.

G. M. Sessler, IEEE Trans. Electr. Insul. 24, 395 (1989).
[CrossRef]

G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
[CrossRef]

Ulrich, D. R.

D. R. Ulrich, Mol. Cryst. Liq. Cryst. 160, 1 (1988).

West, J. E.

G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
[CrossRef]

Wicker, A.

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

Yoon, D. Y.

M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
[CrossRef]

Zernike, F.

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Europhys. Lett. (1)

B. Berge, A. Wicker, J. Lajzerowicz, J. F. Legrand, Europhys. Lett. 9, 657 (1989).
[CrossRef]

Ferroelectrics (1)

S. Bauer, B. Ploss, Ferroelectrics 118, 435 (1991).
[CrossRef]

IEEE Trans. Electr. Insul. (3)

G. M. Sessler, IEEE Trans. Electr. Insul. 24, 395 (1989).
[CrossRef]

E. Bihler, K. Holdik, W. Eisenmenger, IEEE Trans. Electr. Insul. 24, 541 (1989).
[CrossRef]

S. Bauer, IEEE Trans. Electr. Insul. 27, 849 (1992).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

D. R. Ulrich, Mol. Cryst. Liq. Cryst. 160, 1 (1988).

Phys. Rev. Lett. (3)

P. Laurenceau, G. Dreyfus, J. Lewiner, Phys. Rev. Lett. 38, 46 (1977).
[CrossRef]

G. M. Sessler, J. E. West, R. Gerhard, Phys. Rev. Lett. 48, 563 (1982).
[CrossRef]

A. S. deReggi, C. M. Guttman, F. I. Mopsik, G. T. Davis, M. G. Broadhurst, Phys. Rev. Lett. 40, 413 (1978).
[CrossRef]

Polymers Adv. Technol. (1)

M. Eich, G. C. Bjorklund, D. Y. Yoon, Polymers Adv. Technol. 1, 189 (1990).
[CrossRef]

Solid State Commun. (1)

W. Eisenmenger, M. Haardt, Solid State Commun. 41, 917 (1982).
[CrossRef]

Other (1)

F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Distribution of the piezoelectric coefficient e33 for a partially poled PVDF film, as measured with the piezoelectric pressure-step technique. The time scale is connected with the sample depth by z = υt, with υ = 2200 m/s the velocity of sound of PVDF.

Fig. 2
Fig. 2

Second-harmonic signals (SHG) as a function of the incidence angle for a 40-μm homogeneously poled film (crosses), a 9-μm homogeneously poled film (diamonds), and a 40-μm partially poled film (pluses). The fitted curves are obtained with one parameter set and for the partially poled film by taking into account the polarization distribution of Fig. 1.

Fig. 3
Fig. 3

Quotient of two second-harmonic signals as a function of the incidence angle for ISHG(homogeneously poled 40-μm film)/ISHG(partially poled 40-μm film) (crosses) and ISHG(homogeneously poled 9-μm film)/ISHG(partially poled 40-μm film) (diamonds).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P NL = ( 2 d 31 E 1 E 3 , 2 d 31 E 2 E 3 , d 31 E 1 2 + d 31 E 2 2 + d 33 E 3 2 ) ,
I SHG ( θ ) = A ( θ ) | 0 L e 33 ( z ) exp [ i Δ k ( θ ) z ] d z | 2 ,
I SHG 1 I SHG 2 = ( e 33 1 e 33 2 ) 2 sin 2 ( Δ k L 1 / 2 ) sin 2 ( Δ k L 2 / 2 ) ,

Metrics