Abstract

We demonstrate theoretically and experimentally self-quenching of the fundamental semiconductor laser frequency fluctuations to a level that is orders of magnitude below the Schawlow–Townes limit for a solitary laser. It is shown that the main operative mechanism is the combined action of a frequency-dependent internal loss and amplitude-to-phase coupling. The internal frequency-dependent loss is introduced by means of spectrally narrow external optical feedback, which provides a strong frequency-dependent dispersion. Linewidth reduction by a factor of 2 × 103 is demonstrated by using a narrow Doppler-free Faraday resonance in Cs vapor.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Fleming, A. Mooradian, Appl. Phys. Lett. 8, 511 (1981).
    [CrossRef]
  2. C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
    [CrossRef]
  3. K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
    [CrossRef]
  4. A. Yariv, R. Nabiev, K. Vahala, Opt. Lett. 15, 1359 (1990).
    [CrossRef] [PubMed]
  5. D. Halford, presented at Frequency Standards and Metrology Seminar, Canada, 1971.
  6. G. H. Agrawal, IEEE J. Quantum Electron. QE-20, 468 (1984).
    [CrossRef]
  7. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  8. P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
    [CrossRef]
  9. W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 58, 995 (1991).
    [CrossRef]

1991 (1)

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 58, 995 (1991).
[CrossRef]

1990 (1)

1989 (1)

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

1987 (1)

1984 (1)

G. H. Agrawal, IEEE J. Quantum Electron. QE-20, 468 (1984).
[CrossRef]

1983 (1)

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

1982 (1)

C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

1981 (1)

F. Fleming, A. Mooradian, Appl. Phys. Lett. 8, 511 (1981).
[CrossRef]

Agrawal, G. H.

G. H. Agrawal, IEEE J. Quantum Electron. QE-20, 468 (1984).
[CrossRef]

Breant, C.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Campbell, J. C.

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 58, 995 (1991).
[CrossRef]

Clairon, A.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Dahmani, B.

Drullinger, R.

Fleming, F.

F. Fleming, A. Mooradian, Appl. Phys. Lett. 8, 511 (1981).
[CrossRef]

Halford, D.

D. Halford, presented at Frequency Standards and Metrology Seminar, Canada, 1971.

Henry, C. H.

C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

Hollberg, L.

Laurent, P.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Lee, W. D.

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 58, 995 (1991).
[CrossRef]

Mooradian, A.

F. Fleming, A. Mooradian, Appl. Phys. Lett. 8, 511 (1981).
[CrossRef]

Nabiev, R.

Vahala, K.

A. Yariv, R. Nabiev, K. Vahala, Opt. Lett. 15, 1359 (1990).
[CrossRef] [PubMed]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

Yariv, A.

A. Yariv, R. Nabiev, K. Vahala, Opt. Lett. 15, 1359 (1990).
[CrossRef] [PubMed]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

F. Fleming, A. Mooradian, Appl. Phys. Lett. 8, 511 (1981).
[CrossRef]

W. D. Lee, J. C. Campbell, Appl. Phys. Lett. 58, 995 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

G. H. Agrawal, IEEE J. Quantum Electron. QE-20, 468 (1984).
[CrossRef]

C. H. Henry, IEEE J. Quantum Electron. QE-18, 259 (1982).
[CrossRef]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

Opt. Lett. (2)

Other (1)

D. Halford, presented at Frequency Standards and Metrology Seminar, Canada, 1971.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the experimental apparatus. S.C.L., semiconductor laser; L’s, lenses; P’s, linear polarizers; B.S., beam splitter; N.D., neutral-density filter; M, mirror; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Beat note obtained with delayed self-heterodyne. Curve (a) is the minimum linewidth obtained, with the solid curve being a best fit to a Lorentzian raised to the power 3/2. Curve (b) is another beat note signal, with the dashed curve being a best fit to a Lorentzian line shape.

Fig. 3
Fig. 3

1/Δν as a function of the square root of the feedback level with the linewidth measured at the top of the Faraday signal with zero frequency pulling [curve (a)] and an empty cavity [curve (b)].

Fig. 4
Fig. 4

Points on curve (a), the laser linewidth as a function of detuning from the peak of the Faraday signal. Points on curve (b), [Δνκ(ω)]−1 as a function of detuning; the solid curve is a fit to a derivative of dispersive line shape.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ ˙ + ω 1 δ + A 0 C r φ ˙ = Δ i / 2 ω m , A 0 ( 1 + C i ) φ ˙ - α ω 1 δ = - Δ r / 2 ω m .
φ ( t 1 ) φ ( t 2 ) = W 4 A 0 2 ω m 2 ( 1 + α 2 ) ( 1 + α C r + C i ) 2 min ( t 1 , t 2 ) .
Δ ν = Δ ν S - T ( 1 + α 2 ) ( 1 + α C r + C i ) 2 Δ ν S - T ( 1 + α 2 ) Q 2 ,
C r = κ ( ω ) / ω cos ϕ - κ ( ω ) sin ϕ ( ϕ / ω ) , C i = κ ( ω ) / ω sin ϕ + κ ( ω ) cos ϕ ( ϕ / ω ) ,
Q = 1 + 1 + α 2 [ κ / ω sin ( ϕ + tan - 1 α ) + κ ( ω ) ( τ + ϕ / ω ) cos ( ϕ + tan - 1 α ) ] .
ω = Ω - κ ( ω ) ( 1 + α 2 ) sin ( ϕ + tan - 1 α ) ,
ω ϕ = - ( 1 + α 2 ) κ ( ω ) 1 + ( 1 + α 2 ) ( τ + ϕ / ω ) κ ( ω ) .

Metrics