Abstract

Conversion efficiency of 85% has been achieved in cw second-harmonic generation from 1.08 to 0.54 μm with a potassium titanyl phosphate crystal inside an external ring cavity. An absolute comparison between the experimental data and a simple theory is made and shows good agreement.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
    [CrossRef]
  2. A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  3. J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
    [CrossRef]
  4. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
    [CrossRef]
  5. E. S. Polzik, H. J. Kimble, Opt. Lett. 16, 731 (1991).
    [CrossRef]
  6. S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
    [CrossRef] [PubMed]
  7. J. D. Bierlein, H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  8. V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).
  9. A small dither at the frequency 3.5 kHz is applied to mirror M4 to produce a peak excursion of the cavity resonance of 100 kHz. The intensity of the transmitted beam at ω is synchronously detected, with the resulting error signal amplified and applied to the piezoelectric transducer on which M4 is mounted to close the servo loop.
  10. This difference may be due to shifts in the phase-matching temperature associated with focusing geometry (see Ref. 11). Such shifts are observed in our study for different cavity beam waists with a given crystal.
  11. G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]

1991 (2)

1989 (1)

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

1986 (1)

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

1980 (1)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

1968 (2)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Bierlein, J. D.

Boni, R.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Byer, R. L.

S. T. Yang, C. C. Pohalski, E. K. Gustafson, R. L. Byer, R. S. Feigelson, R. J. Raymakers, R. K. Route, Opt. Lett. 16, 1493 (1991).
[CrossRef] [PubMed]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Craxton, R. S.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Ermakov, G. A.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

Feigelson, R. S.

Garmash, V. M.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

Geusic, J. E.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Gustafson, E. K.

Jacobs, S. D.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Kimble, H. J.

E. S. Polzik, H. J. Kimble, Opt. Lett. 16, 731 (1991).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kozlovsky, W. J.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Levinstein, H. J.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

Pavlova, N. I.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

Pohalski, C. C.

Polzik, E. S.

E. S. Polzik, H. J. Kimble, Opt. Lett. 16, 731 (1991).
[CrossRef]

Raymakers, R. J.

Rizzo, J. E.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Route, R. K.

Seka, W.

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Singh, S.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Smith, R. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Tarasov, A. V.

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

Van Uitert, L. G.

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

Vanherzeele, H.

Yang, S. T.

Appl. Phys. Lett. (1)

J. E. Geusic, H. J. Levinstein, S. Singh, R. G. Smith, L. G. Van Uitert, Appl. Phys. Lett. 12, 306 (1968).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, IEEE J. Quantum Electron. 24, 913 (1988); W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, G. L. Bona, Appl. Phys. Lett. 56, 2291 (1990).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Seka, S. D. Jacobs, J. E. Rizzo, R. Boni, R. S. Craxton, Opt. Commun. 34, 469 (1980); R. S. Craxton, Opt. Commun. 34, 474 (1980).
[CrossRef]

Opt. Lett. (2)

Sov. Tech. Phys. Lett. (1)

V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov, Sov. Tech. Phys. Lett. 12, 505 (1986).

Other (2)

A small dither at the frequency 3.5 kHz is applied to mirror M4 to produce a peak excursion of the cavity resonance of 100 kHz. The intensity of the transmitted beam at ω is synchronously detected, with the resulting error signal amplified and applied to the piezoelectric transducer on which M4 is mounted to close the servo loop.

This difference may be due to shifts in the phase-matching temperature associated with focusing geometry (see Ref. 11). Such shifts are observed in our study for different cavity beam waists with a given crystal.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. PZT, piezoelectric transducer.

Fig. 2
Fig. 2

(a) Second-harmonic power P2 as a function of input infrared power P1, (b) conversion efficiency η as a function of input infrared power P1. The solid curves are derived from Eq. (1) with the measured values ENL = 6.3 × 10−4 W−1, L = 0.32%, and T = 3%.

Fig. 3
Fig. 3

Theoretical conversion efficiency η as a function of input infrared power P1 with ENL = 2 × 10−3 W−1, L = 0.32%, and T = 3.9%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = 4 T E NL P 1 [ 2 - 1 - T ( 2 - L - η E NL P 1 ) ] 2 ,

Metrics