Abstract

The robust (solitonlike) nature of bistable light bullets is demonstrated numerically for some illustrative models through three-dimensional switching simulations and collision studies. Bistable light bullets are propagating, spheroidal, bright optical solitons characterized by different sizes and intensity profiles but with the same energy.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Silberberg, Opt. Lett. 15, 1282 (1990).
    [CrossRef] [PubMed]
  2. R. H. Enns, S. S. Rangnekar, “Bistable spheroidal optical solitons,” Phys. Rev. A (to be published).
    [PubMed]
  3. D. A. Temple, C. Warde, Appl. Phys. Lett. 59, 4 (1991).
    [CrossRef]
  4. D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
    [CrossRef] [PubMed]
  5. R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
    [CrossRef] [PubMed]
  6. M. D. Feit, J. A. Fleck, Appl. Opt. 17, 3990 (1978).
    [CrossRef] [PubMed]

1991 (1)

D. A. Temple, C. Warde, Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

1990 (2)

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Y. Silberberg, Opt. Lett. 15, 1282 (1990).
[CrossRef] [PubMed]

1987 (1)

R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
[CrossRef] [PubMed]

1978 (1)

Enns, R. H.

R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
[CrossRef] [PubMed]

R. H. Enns, S. S. Rangnekar, “Bistable spheroidal optical solitons,” Phys. Rev. A (to be published).
[PubMed]

Feinberg, J.

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Feit, M. D.

Fleck, J. A.

Kaplan, A. E.

R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
[CrossRef] [PubMed]

Mahgerefteh, D.

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Rangnekar, S. S.

R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
[CrossRef] [PubMed]

R. H. Enns, S. S. Rangnekar, “Bistable spheroidal optical solitons,” Phys. Rev. A (to be published).
[PubMed]

Silberberg, Y.

Temple, D. A.

D. A. Temple, C. Warde, Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

Warde, C.

D. A. Temple, C. Warde, Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. A. Temple, C. Warde, Appl. Phys. Lett. 59, 4 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

R. H. Enns, S. S. Rangnekar, A. E. Kaplan, Phys. Rev. A 35, 466 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Mahgerefteh, J. Feinberg, Phys. Rev. Lett. 64, 2195 (1990).
[CrossRef] [PubMed]

Other (1)

R. H. Enns, S. S. Rangnekar, “Bistable spheroidal optical solitons,” Phys. Rev. A (to be published).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dashed (solid) curve, normalized energy ρ = PΔ3/2/I0 (ρ = P) versus the parameter β = δ/Δ (β = δ) for the SLSS (DSKC) model. Inset: f(I) versus I for both models. The transitions shown correspond to numerical runs in Figs. 25.

Fig. 2
Fig. 2

Intermediate profiles for upswitching run ag in Fig. 1: (a) z = 0, (b) z = 100, (c) z = 112, (d) z = 128, (e) z = 144, (f) z = 160. The scale is the same for all plots.

Fig. 3
Fig. 3

Identification of final state g: circles, numerical points; solid curve, theoretical profile for βfinal = βg = 0.24; upper (lower) dashed curve, β = 0.27 (0.21). Inset: maximum height H versus z for transition ag. States af correspond to plots (a)–(f) in Fig. 2. State g: profile that one would obtain as z → ∞.

Fig. 4
Fig. 4

Identification of final state n: circles, numerical points; solid curve, theoretical profile for βfinal = βn = 1.4; upper (lower) dashed curve, β = 1.6 (1.2). Inset: H versus z for upswitching transition mn in Fig. 1. The grid domain is −20 ≤ x, y, t ≤ 20.

Fig. 5
Fig. 5

Collision of two identical SLSS solitary waves corresponding to βA = 0.20 in Fig. 1: (A) z = 0, (B) z = 29.4, (C) z = 40, (D) z = 45.4, (E) z = 50.7, (F) z = 74.7. The scale is the same for all plots.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i E z + 1 / 2 ( E x x + E y y + E t t ) + f ( I = E 2 ) E = 0.
U r r + 2 r U r + 2 U [ f ( U 2 ) - δ ] = 0.

Metrics