Abstract

A new time-domain approach to frequency-selective optical data storage is described. In this approach, a spatial storage cell is exposed to two cotemporal, spatially angled, frequency-chirped excitation fields whose duration can greatly exceed the homogeneous dephasing time of the storage material employed. The two beams have a fixed frequency offset, and one is temporally encoded with data. The new method averts several of the drawbacks of existing approaches to time- and frequency-domain optical memories.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szabo, U.S. patent3,896,420 (July22, 1975).
  2. G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).
  3. W. E. Moerner, J. Mol. Electron. 1, 55 (1985).
  4. W. E. Moerner, W. Length, G. C. Bjorklund, in Persistent Spectral Holeburning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988). This volume contains a number of articles related to both the materials and the methods of frequency-selective memories.
    [CrossRef]
  5. T. W. Mossberg, Opt. Lett. 7, 77 (1982); T. W. Mossberg, U.S. patent4,459,682 (July10, 1984).
    [CrossRef] [PubMed]
  6. W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
    [CrossRef]
  7. M. Mitsunaga, N. Uesugi, Opt. Lett. 15, 195 (1990).
    [CrossRef] [PubMed]
  8. M. Mitsunaga, N. Uesugi, Opt. Lett. 16, 264 (1991).
    [CrossRef] [PubMed]
  9. S. Kroll, L. E. Jusinski, R. Kachru, Opt. Lett. 16, 517 (1991).
    [CrossRef] [PubMed]
  10. M. K. Kim, R. Kachru, Opt. Lett. 14, 423 (1989).
    [CrossRef] [PubMed]
  11. J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).
  12. Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
    [CrossRef]
  13. P. Saari, R. Kaarli, A. Rebane, J. Opt. Soc. Am. B 3, 527 (1986).
    [CrossRef]
  14. M. K. Kim, R. Kachru, Opt. Lett. 12, 593 (1987).
    [CrossRef] [PubMed]
  15. U. P. Wild, S. E. Bucher, F. A. Burkhalter, Appl. Opt. 24, 1526 (1985).
    [CrossRef] [PubMed]
  16. U. P. Wild, A. Renn, J. Mol. Electron. 7, 1 (1991).
    [CrossRef]
  17. Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
    [CrossRef] [PubMed]
  18. J. M. Zhang, D. J. Gauthier, J. Huang, T. W. Mossberg, Opt. Lett. 16, 103 (1991).
    [CrossRef] [PubMed]
  19. M. Mitsunaga, R. Kachru, E. Xu, M. K. Kim, Phys. Rev. Lett. 63, 754 (1989).
    [CrossRef] [PubMed]
  20. J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
    [CrossRef] [PubMed]

1991 (4)

1990 (1)

1989 (3)

M. K. Kim, R. Kachru, Opt. Lett. 14, 423 (1989).
[CrossRef] [PubMed]

M. Mitsunaga, R. Kachru, E. Xu, M. K. Kim, Phys. Rev. Lett. 63, 754 (1989).
[CrossRef] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

1988 (1)

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

1987 (1)

1986 (2)

1985 (2)

1984 (2)

J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

1982 (1)

Babbitt, W. R.

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Bai, Y. S.

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Bjorklund, G. C.

W. E. Moerner, W. Length, G. C. Bjorklund, in Persistent Spectral Holeburning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988). This volume contains a number of articles related to both the materials and the methods of frequency-selective memories.
[CrossRef]

Bucher, S. E.

Burkhalter, F. A.

Carlson, N. W.

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

Castro, G.

G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Gauthier, D. J.

Haarer, D.

G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Huang, J.

J. M. Zhang, D. J. Gauthier, J. Huang, T. W. Mossberg, Opt. Lett. 16, 103 (1991).
[CrossRef] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

Jusinski, L. E.

Kaarli, R.

P. Saari, R. Kaarli, A. Rebane, J. Opt. Soc. Am. B 3, 527 (1986).
[CrossRef]

J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).

Kachru, R.

Kikas, J.

J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).

Kim, M. K.

Kroll, S.

Length, W.

W. E. Moerner, W. Length, G. C. Bjorklund, in Persistent Spectral Holeburning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988). This volume contains a number of articles related to both the materials and the methods of frequency-selective memories.
[CrossRef]

Lezama, A.

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

Macfarlene, R. M.

G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Mitsunaga, M.

Moerner, W. E.

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

W. E. Moerner, W. Length, G. C. Bjorklund, in Persistent Spectral Holeburning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988). This volume contains a number of articles related to both the materials and the methods of frequency-selective memories.
[CrossRef]

Mossberg, T. W.

J. M. Zhang, D. J. Gauthier, J. Huang, T. W. Mossberg, Opt. Lett. 16, 103 (1991).
[CrossRef] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Opt. Lett. 11, 724 (1986).
[CrossRef] [PubMed]

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

T. W. Mossberg, Opt. Lett. 7, 77 (1982); T. W. Mossberg, U.S. patent4,459,682 (July10, 1984).
[CrossRef] [PubMed]

Rebane, A.

P. Saari, R. Kaarli, A. Rebane, J. Opt. Soc. Am. B 3, 527 (1986).
[CrossRef]

J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).

Renn, A.

U. P. Wild, A. Renn, J. Mol. Electron. 7, 1 (1991).
[CrossRef]

Saari, P.

Szabo, A.

A. Szabo, U.S. patent3,896,420 (July22, 1975).

Trommsdorff, H. P.

G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Uesugi, N.

Wild, U. P.

Xu, E.

M. Mitsunaga, R. Kachru, E. Xu, M. K. Kim, Phys. Rev. Lett. 63, 754 (1989).
[CrossRef] [PubMed]

Zhang, J. M.

J. M. Zhang, D. J. Gauthier, J. Huang, T. W. Mossberg, Opt. Lett. 16, 103 (1991).
[CrossRef] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. S. Bai, W. R. Babbitt, N. W. Carlson, T. W. Mossberg, Appl. Phys. Lett. 45, 714 (1984).
[CrossRef]

J. Mol. Electron. (2)

U. P. Wild, A. Renn, J. Mol. Electron. 7, 1 (1991).
[CrossRef]

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. R. Babbitt, T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

Opt. Lett. (8)

Opt. Spektrosk. (1)

J. Kikas, R. Kaarli, A. Rebane, Opt. Spektrosk. 56, 387 (1984).

Phys. Rev. Lett. (2)

M. Mitsunaga, R. Kachru, E. Xu, M. K. Kim, Phys. Rev. Lett. 63, 754 (1989).
[CrossRef] [PubMed]

J. Huang, J. M. Zhang, A. Lezama, T. W. Mossberg, Phys. Rev. Lett. 63, 78 (1989).
[CrossRef] [PubMed]

Other (3)

W. E. Moerner, W. Length, G. C. Bjorklund, in Persistent Spectral Holeburning: Science and Applications, W. E. Moerner, ed., Vol. 44 of Topics in Current Physics (Springer-Verlag, Berlin, 1988). This volume contains a number of articles related to both the materials and the methods of frequency-selective memories.
[CrossRef]

A. Szabo, U.S. patent3,896,420 (July22, 1975).

G. Castro, D. Haarer, R. M. Macfarlene, H. P. Trommsdorff, U.S. patent4,101,976 (July18, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Write sequence of the standard time-domain approach to frequency-selective optical data storage. The total duration of the write sequence in this case is less than or of the order of the homogeneous material relaxation time τh.

Fig. 2
Fig. 2

Write sequence of the swept-carrier approach to time-domain frequency-selective optical-data storage. (a) Carrier frequencies of the reference and data pulses versus time. The overall frequency sweep is of magnitude νCH. (b) Relative timing of the swept-carrier reference and data pulses. The total duration of the swept-carrier write sequence may greatly exceed τh.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ g g ( ν ) { [ E ref ( ν ) ] * E data ( ν ) + c . c . } ,
E τ obs ( ν ) - τ obs E ( t - η ) exp ( - 2 π i ν t ) d t
E sig ( t ) - g ( ν ) E read ( ν ) × { [ E ref { ν ) ] * E data ( ν ) + c . c . } exp ( 2 π i ν t ) d ν ,
k sig = k data + k read - k ref .

Metrics