Abstract

Dark spatial solitons are created when intense quasi-plane waves containing amplitude or phase discontinuities propagate through self-defocusing, Kerr-like media. We show that dark solitons form not only stable waveguides but also structures equivalent to Y-junction splitters and other devices.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Allen, S. R. Skinner, D. R. Andersen, A. L. Smirl, Opt. Lett. 16, 156 (1991).
  2. J. S. Aitchison, A. M. Werner, Y. Silverberg, M. K. Oliver, J. L. Jackel, D. E. Laird, E. M. Vogelm, P. W. E. Smith, Opt. Lett. 15, 471 (1990).
    [CrossRef] [PubMed]
  3. R. De la Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).
    [CrossRef] [PubMed]
  4. A. W. Snyder, D. J. Mitchell, L. Poladian, F. Ladouceur, Opt. Lett. 16, 21 (1991).
    [CrossRef] [PubMed]
  5. M. Shalaby, A. Barthelemy, Opt. Lett. 16, 1472 (1991); J. S. Aitchison, A. M. Werner, Y. Silverberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, P. W. E. Smith, Opt. Lett. 16, 14 (1991).
    [CrossRef] [PubMed]
  6. M. Sheik-bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [CrossRef] [PubMed]
  7. K. J. Blow, N. J. Doran, Phys. Lett. A 107, 55 (1985).
    [CrossRef]

1991

1990

1989

1985

K. J. Blow, N. J. Doran, Phys. Lett. A 107, 55 (1985).
[CrossRef]

Aitchison, J. S.

Allen, G. R.

Andersen, D. R.

Barthelemy, A.

Blow, K. J.

K. J. Blow, N. J. Doran, Phys. Lett. A 107, 55 (1985).
[CrossRef]

De la Fuente, R.

Doran, N. J.

K. J. Blow, N. J. Doran, Phys. Lett. A 107, 55 (1985).
[CrossRef]

Froehly, C.

Jackel, J. L.

Ladouceur, F.

Laird, D. E.

Mitchell, D. J.

Oliver, M. K.

Poladian, L.

Said, A. A.

Shalaby, M.

Sheik-bahae, M.

Silverberg, Y.

Skinner, S. R.

Smirl, A. L.

Smith, P. W. E.

Snyder, A. W.

Van Stryland, E. W.

Vogelm, E. M.

Werner, A. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Evolution of a dark spatial soliton from a perturbation induced by placing a phase jump 200 mm from the input to the nonlinear medium across the center of a Gaussian laser beam. (b) The waveguiding properties of the dark-soliton channel calculated for a Gaussian probe 200 μm in diameter at the same wavelength as the soliton-forming beam and launched coaxially along the dark soliton.

Fig. 2
Fig. 2

(a) Experimentally measured width of the dark soliton at the exit of a nonlinear medium and (b) the width of the guided beam versus the intensity of the soliton-forming beam. Slices across the axis of the beam emerging from the nonlinear medium were digitized and assembled into a single gray-scale picture to illustrate the evolution of the beam patterns with increasing laser power in 100-mW intervals from 0 to 900 mW.

Fig. 3
Fig. 3

(a) Evolution of a pair of dark spatial solitons from an amplitude perturbation formed by a 40-μm wire across the soliton-forming beam with an intensity of 20 W/cm2 at the input to the nonlinear medium. (b) The waveguiding properties of the structure in (a) calculated for a 40-μm diameter Gaussian probe beam launched axially along the dark solitons.

Fig. 4
Fig. 4

Experimental beam profiles: (a) the input soliton-forming beam pattern, (b) the output dark-soliton pattern, (c) the input probe-beam pattern, (d) the output probe-beam pattern.

Metrics