Abstract

We present a theoretical analysis and experimental demonstration of a new method for spectral narrowing of laser radiation. The bandwidth narrowing is experienced by a laser beam subjected to a photorefractive two-beam coupling process. Contrary to the conventional method of frequency filtering by a Fabry–Perot étalon, this technique has no intrinsic finesse limitation on its resolution. A factor of 2 in frequency bandwidth narrowing is achieved with an argon-ion laser.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985), p. 224.
  2. N. V. Kukhtarev, V. B. Markov, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  3. M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).
  4. B. Imbert, H. Rajbenbach, J.-P. Huignard, Opt. Lett. 13, 327 (1988).
    [CrossRef] [PubMed]

1988 (1)

1984 (1)

M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).

1979 (1)

N. V. Kukhtarev, V. B. Markov, Ferroelectrics 22, 949 (1979).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).

Fisher, B.

M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).

Huignard, J.-P.

Imbert, B.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, Ferroelectrics 22, 949 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, Ferroelectrics 22, 949 (1979).
[CrossRef]

Rajbenbach, H.

Yariv, A.

M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).

Yeh, P.

P. Yeh, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985), p. 224.

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, Ferroelectrics 22, 949 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, A. Yariv, B. Fisher, IEEE J. Quantum Electron. QE-20, 1 (1984).

Opt. Lett. (1)

Other (1)

P. Yeh, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1985), p. 224.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two-beam coupling experiment in photorefractive crystal. BS, beam splitter; M, mirror.

Fig. 2
Fig. 2

Theoretical input (dashed line) and output (solid curve) signal beam spectral distribution for ΔωL/2c = 5π/8.

Fig. 3
Fig. 3

Experimental spectral distribution of the signal beam for L = 4 cm. The solid curve is the amplified distribution, and the dotted curve is the original distribution. One space on the ω/2π axis is 1.3 GHz.

Fig. 4
Fig. 4

Experimental spectral signal distribution at L = 8 cm. The solid curve is the amplified distribution, and the dashed curve is the original signal distribution at the crystal input.

Fig. 5
Fig. 5

Function S(ω) versus ω/2π. Each spacing is 0.7 GHz.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

l coh l ,             l coh = 2 π c Δ ω ,
A s ( ω , 0 ) = q - 1 A p ( ω , 0 ) exp ( i ω L / c ) ,
q - 1 = | I s ( ω , 0 ) I p ( ω , 0 ) | 1 / 2
A s ( ω , z ) z = Γ I 0 [ ω A p * ( ω , z ) A s ( ω , z ) ] A p ( ω , z ) ,
A p ( ω , z ) z = - Γ I 0 [ ω A p ( ω , z ) A s * ( ω , z ) ] A s ( ω , z ) .
ω A p ( ω , z ) A s * ( ω + Ω , z ) = ω A p ( ω , z ) × A s * ( ω + Ω , z ) exp { i [ ϕ ( ω ) - ϕ ( ω + Ω ) ] } .
G ( z ) exp [ i ϕ ( z ) ] = ω A p * ( ω , z ) A s ( ω , z ) ,
d ϕ d z = 0 ,             ϕ ( z ) = ϕ ( z = 0 ) ϕ 0 .
ϕ 0 = ω 0 L c .
A s ( ω , l ) = A s ( ω , 0 ) cos δ + exp ( i ϕ 0 ) A p ( ω , 0 ) sin δ ,
exp ( i ϕ 0 ) A p ( ω , l ) = - A s ( ω , 0 ) sin δ exp ( i ϕ 0 ) + A p ( ω , 0 ) cos δ ,
δ = Γ I 0 0 l G ( z ) d z
G ( z = 0 ) exp ( i ϕ ) = A 2 sinc ( Δ ω L / 2 c ) exp ( i ω 0 L / c ) .
I s ( ω , l ) = 2 I s ( ω , 0 ) cos 2 [ ( ω - ω 0 ) L 2 c ] .
Δ ω output Δ ω 2.0
I s ( ω , l ) = I s ( ω , 0 ) [ cos 2 δ + q 2 sin 2 δ + 2 q cos δ × sin δ cos ( ω - ω 0 ) L c ] .
S ( ω ) I s ( ω , l ) I s ( ω , 0 ) .
Δ ω 1 L c = π .

Metrics