Abstract

A new technique has been developed to measure directly the UV absorption spectrum of optical fibers to wavelengths as short as 200 nm. Both the shape and the intensity of the UV absorption bands found in the fiber correspond to those measured in preforms. No bands other than those attributed to GeO (240 and 330 nm) were observed.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
    [Crossref]
  2. V. Garino-Canina, C. R. Acad. Sci. Paris 247, 593 (1958).
  3. M. J. Yuen, Appl. Opt. 21, 136 (1982).
    [Crossref] [PubMed]
  4. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [Crossref] [PubMed]
  5. D. P. Hand, P. St. J. Russell, Opt. Lett. 15, 102 (1990).
    [Crossref] [PubMed]
  6. K. D. Simmons, S. LaRochelle, V. Mizrahi, G. I. Stegeman, D. L. Griscom, Opt. Lett. 16, 141 (1991).
    [Crossref] [PubMed]
  7. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
    [Crossref]
  8. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

1991 (3)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

K. D. Simmons, S. LaRochelle, V. Mizrahi, G. I. Stegeman, D. L. Griscom, Opt. Lett. 16, 141 (1991).
[Crossref] [PubMed]

1990 (1)

1989 (1)

1982 (1)

1958 (2)

A. V. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[Crossref]

V. Garino-Canina, C. R. Acad. Sci. Paris 247, 593 (1958).

Ainsle, B. J.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

Armitage, J. R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

Cohen, A. V.

A. V. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[Crossref]

Davey, S. T.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

Garino-Canina, V.

V. Garino-Canina, C. R. Acad. Sci. Paris 247, 593 (1958).

Glenn, W. H.

Griscom, D. L.

Hand, D. P.

Kashyap, R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

LaRochelle, S.

Meltz, G.

Mizrahi, V.

Morey, W. W.

Russell, P. St. J.

Simmons, K. D.

Smith, H. L.

A. V. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[Crossref]

Stegeman, G. I.

Williams, D. L.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

Yuen, M. J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Appl. Phys. Lett. 59, 762 (1991).
[Crossref]

C. R. Acad. Sci. Paris (1)

V. Garino-Canina, C. R. Acad. Sci. Paris 247, 593 (1958).

J. Phys. Chem. Solids (1)

A. V. Cohen, H. L. Smith, J. Phys. Chem. Solids 7, 301 (1958).
[Crossref]

Opt. Lett. (3)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, B. J. Ainsle, Proc. Soc. Photo-Opt. Instrum. Eng. 1516, 29 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Composite figure showing the loss spectrum of a typical telecommunications fiber (3-mol. % germania, single mode). The short-wavelength data (filled circles) between 300 and 200 nm were taken on a 680-μm-long fiber section by using the V-groove splicing technique. The long-wavelength data (open diamonds) between 500 and 300 nm were taken using a standard cutback technique.

Fig. 2
Fig. 2

Schematic of a V-groove splice.

Fig. 3
Fig. 3

Loss spectrum of a 250-μm length of Tethered Vehicle Fiber (10-mol.% germania, single mode) taken by using the V-groove splicing technique.

Metrics