Abstract

Accurate prediction of the short-term future behavior of atmospherically distorted wave fronts would permit the elimination of delays inherent in current adaptive-optics systems. It is shown by using astronomical image data that atmospherically induced wave-front distortions as represented by time series of wave-front tips and tilts measured in the visible and piston values measured in the infrared are predictable to a degree that would be useful in an adaptive-optics system. Adaptive linear predictors as well as predictors based on the back-propagation neural network are employed in this study.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription