Abstract

A single-mode linear-cavity fiber laser that utilizes intracore Bragg reflectors for cavity feedback has been continuously tuned, without mode hopping, when both the gratings and enclosed fiber are stretched uniformly. Continuous tuning is achieved in a 1.54-μm erbium fiber laser since the change in the reflected wavelength from a Bragg reflector tracks the change in the cavity resonance wavelength.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kobayashi, I. Mito, IEEE J. Lightwave Technol. 6, 1623 (1988).
    [CrossRef]
  2. S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
    [CrossRef]
  3. G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
    [CrossRef]
  4. K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
    [CrossRef]
  5. G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
    [CrossRef]
  6. P. Barnsley, J. Opt. Soc. Am. A 5, 1339 (1988).
    [CrossRef]
  7. S. L. Gilbert, Opt. Lett. 16, 150 (1991).
    [PubMed]
  8. G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
    [CrossRef] [PubMed]
  9. G. A. Ball, W. W. Morey, “Narrow-linewidth integrated fiber master oscillator power amplifier,” in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1992).
  10. J. R. Dunphy, United Technologies Research Center, East Hartford, Conn. 06108 (personal communication, 1991).

1991 (3)

G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
[CrossRef]

S. L. Gilbert, Opt. Lett. 16, 150 (1991).
[PubMed]

1990 (2)

K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
[CrossRef]

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

1989 (1)

1988 (2)

P. Barnsley, J. Opt. Soc. Am. A 5, 1339 (1988).
[CrossRef]

K. Kobayashi, I. Mito, IEEE J. Lightwave Technol. 6, 1623 (1988).
[CrossRef]

Amann, M. C.

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

Ball, G. A.

G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

G. A. Ball, W. W. Morey, “Narrow-linewidth integrated fiber master oscillator power amplifier,” in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1992).

Barnsley, P.

Cowle, G. J.

G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
[CrossRef]

Dunphy, J. R.

J. R. Dunphy, United Technologies Research Center, East Hartford, Conn. 06108 (personal communication, 1991).

Gilbert, S. L.

Glenn, W. H.

G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

Illek, S.

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

Iwatsuki, K.

K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
[CrossRef]

Kobayashi, K.

K. Kobayashi, I. Mito, IEEE J. Lightwave Technol. 6, 1623 (1988).
[CrossRef]

Lang, H.

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

Meltz, G.

Mito, I.

K. Kobayashi, I. Mito, IEEE J. Lightwave Technol. 6, 1623 (1988).
[CrossRef]

Morey, W. W.

G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

G. Meltz, W. W. Morey, W. H. Glenn, Opt. Lett. 14, 823 (1989).
[CrossRef] [PubMed]

G. A. Ball, W. W. Morey, “Narrow-linewidth integrated fiber master oscillator power amplifier,” in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1992).

Okamura, H.

K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
[CrossRef]

Payne, D. N.

G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
[CrossRef]

Reid, D.

G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
[CrossRef]

Saruwatari, M.

K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
[CrossRef]

Schanen, C.

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

Thulke, W.

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

Electron. Lett. (3)

K. Iwatsuki, H. Okamura, M. Saruwatari, Electron. Lett. 26, 2033 (1990).
[CrossRef]

G. J. Cowle, D. N. Payne, D. Reid, Electron. Lett. 27, 229 (1991).
[CrossRef]

S. Illek, W. Thulke, C. Schanen, H. Lang, M. C. Amann, Electron. Lett. 26, 46 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

K. Kobayashi, I. Mito, IEEE J. Lightwave Technol. 6, 1623 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. A. Ball, W. W. Morey, W. H. Glenn, IEEE Photon. Technol. Lett. 3, 613 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (2)

G. A. Ball, W. W. Morey, “Narrow-linewidth integrated fiber master oscillator power amplifier,” in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1992).

J. R. Dunphy, United Technologies Research Center, East Hartford, Conn. 06108 (personal communication, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental test-bed. PZT, piezoelectric translator.

Fig. 2
Fig. 2

Single-mode fiber laser spectrum as recorded by a scanning Fabry–Perot interferometer, (a) The Fabry–Perot interferometer has a free spectral range (FSR) of 15 GHz and a finesse of 1000. (b) 50× magnification of the single fiber laser mode, which demonstrates an instrument-limited linewidth of ≤15 MHz.

Fig. 3
Fig. 3

Wavelength tuning of the fiber laser as a function of the signal voltage applied to the PZT driver and as a function of the PZT expansion.

Fig. 4
Fig. 4

Continuous tuning record, without mode hopping, of the single-mode intensity as the fiber laser was stretched uniformly.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ 0 = 2 m n L c ,
δ λ 0 λ 0 = δ n n + δ L c L c = ( 1 ρ e ) + ( α + ζ ) Δ T ,
λ B = 2 n Λ ,
δ λ B λ B = δ n n + δ Λ Λ = ( 1 ρ e ) + ( α + ζ ) Δ T .

Metrics