Abstract

Using a sodium Raman laser that is pumped by a single-frequency cw dye laser, we have measured the narrowband Raman gain that exists in the vicinity of the sodium D1 line. Large gains (>10 cm−1) are measured at moderate pump intensities and sodium densities. The high gain allows us to detect directly a 1.772-GHz beat on the pump beam after it makes only a single pass through the sodium cell. By scanning the frequency of the sodium Raman laser while keeping the pump intensity and frequency constant, we are able to map out the Raman gain profile. The narrowness of the Raman gain is consistent with the narrow beat signal between the Raman-laser beam and the pump beam that was reported earlier [Opt. Lett. 16, 1853 (1991)].

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Gaeta, D. M. Pepper, Opt. Lett. 16, 802 (1991); C. J. Gaeta, J. F. Lam, R. C. Lind, Opt. Lett. 14, 245 (1989).
    [CrossRef] [PubMed]
  2. M. Vallet, M. Pinard, G. Grynberg, Opt. Lett. 16, 1071 (1991).
    [CrossRef] [PubMed]
  3. J. Donoghue, M. Cronin-Golomb, J. S. Kane, P. R. Hemmer, Opt. Lett. 16, 1313 (1991).
    [CrossRef] [PubMed]
  4. M. Poelker, P. Kumar, S.-T. Ho, Opt. Lett. 16, 1853 (1991).
    [CrossRef] [PubMed]
  5. A. C. Tam, Phys. Rev. A 19, 1971 (1979).
    [CrossRef]
  6. M. T. Gruneisen, K. R. MacDonald, R. W. Boyd, J. Opt. Soc. Am. B 5, 123 (1988).
    [CrossRef]
  7. P. Kumar, J. H. Shapiro, Opt. Lett. 10, 226 (1985).
    [CrossRef] [PubMed]
  8. M. Poelker, Ph.D. dissertation (Northwestern University, Evanston, Ill., 1991).
  9. P. R. Hemmer, Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).
  10. T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
    [CrossRef]
  11. Coherent Raman beats have previously been observed in molecular systems in which the ground-level degeneracy is removed by Stark-pulse switching. See R. L. Shoemaker, R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972); R. G. Brewer, E. L. Hahn, Phys. Rev. A 8, 464 (1973).
    [CrossRef]

1991 (4)

1988 (1)

1985 (1)

1979 (1)

A. C. Tam, Phys. Rev. A 19, 1971 (1979).
[CrossRef]

1972 (1)

Coherent Raman beats have previously been observed in molecular systems in which the ground-level degeneracy is removed by Stark-pulse switching. See R. L. Shoemaker, R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972); R. G. Brewer, E. L. Hahn, Phys. Rev. A 8, 464 (1973).
[CrossRef]

1971 (1)

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Boyd, R. W.

Brewer, R. G.

Coherent Raman beats have previously been observed in molecular systems in which the ground-level degeneracy is removed by Stark-pulse switching. See R. L. Shoemaker, R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972); R. G. Brewer, E. L. Hahn, Phys. Rev. A 8, 464 (1973).
[CrossRef]

Cronin-Golomb, M.

Donoghue, J.

Gaeta, C. J.

Gruneisen, M. T.

Grynberg, G.

Hänsch, T. W.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Hemmer, P. R.

J. Donoghue, M. Cronin-Golomb, J. S. Kane, P. R. Hemmer, Opt. Lett. 16, 1313 (1991).
[CrossRef] [PubMed]

P. R. Hemmer, Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).

Ho, S.-T.

Kane, J. S.

Kumar, P.

MacDonald, K. R.

Pepper, D. M.

Pinard, M.

Poelker, M.

M. Poelker, P. Kumar, S.-T. Ho, Opt. Lett. 16, 1853 (1991).
[CrossRef] [PubMed]

M. Poelker, Ph.D. dissertation (Northwestern University, Evanston, Ill., 1991).

Schawlow, A. L.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Shanin, I. S.

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Shapiro, J. H.

Shoemaker, R. L.

Coherent Raman beats have previously been observed in molecular systems in which the ground-level degeneracy is removed by Stark-pulse switching. See R. L. Shoemaker, R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972); R. G. Brewer, E. L. Hahn, Phys. Rev. A 8, 464 (1973).
[CrossRef]

Tam, A. C.

A. C. Tam, Phys. Rev. A 19, 1971 (1979).
[CrossRef]

Vallet, M.

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Phys. Rev. A (1)

A. C. Tam, Phys. Rev. A 19, 1971 (1979).
[CrossRef]

Phys. Rev. Lett. (2)

T. W. Hänsch, I. S. Shanin, A. L. Schawlow, Phys. Rev. Lett. 27, 707 (1971).
[CrossRef]

Coherent Raman beats have previously been observed in molecular systems in which the ground-level degeneracy is removed by Stark-pulse switching. See R. L. Shoemaker, R. G. Brewer, Phys. Rev. Lett. 28, 1430 (1972); R. G. Brewer, E. L. Hahn, Phys. Rev. A 8, 464 (1973).
[CrossRef]

Other (2)

M. Poelker, Ph.D. dissertation (Northwestern University, Evanston, Ill., 1991).

P. R. Hemmer, Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Relative output of the Raman laser as the cavity length is varied.

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Peak Raman gain (squares) in the vicinity of the sodium D1 line. The upper solid trace, which is obtained by using the method of saturation spectroscopy,10 calibrates the frequency scale with the hyperfine doublet (1.77-GHz separation) of the D1 line. Raman gain was measured between the markers on the two sides of the doublet. The single-pass gain of 180 corresponds to a gain coefficient of ≃15 cm−1.

Fig. 4
Fig. 4

Beat signals on the transmitted pump beam. (a) Unfocused pump intensity 11 W/cm2, (b) central peak of (a) with magnetic field on, (c) focused pump intensity 3.2 kW/cm2, (d) focused pump intensity 6.4 kW/cm2.

Fig. 5
Fig. 5

Measurement of the Raman gain profile on the low-frequency side of the D1 line. The data (squares) could only be taken on one side of the Raman gain profile. The solid curve is mirrored on the right side to estimate the gain bandwidth of 21 MHz.

Metrics