Abstract

An electro-optical controlled zooming/focusing lens system based on spatial light modulators that does not require any mechanical movement of the lenses is presented. The system can focus an object over a long range of distances. It also has the property of a conventional zoom lens that the effective focal length of the lens can be adjusted while the image plane is held fixed.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Tam, S. Zhou, M. Feldman, “Spatial light modulator-based electro-optical imaging system,”Appl. Opt. (to be published).
  2. N. Konforti, E. Marom, S. T. Wu, Opt. Lett. 13, 251 (1988).
    [CrossRef] [PubMed]
  3. E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
    [CrossRef]
  4. K. Lu, B. E. A. Saleh, Opt. Eng. 29, 240 (1990).
    [CrossRef]
  5. N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

1991 (1)

N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

1990 (2)

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

K. Lu, B. E. A. Saleh, Opt. Eng. 29, 240 (1990).
[CrossRef]

1988 (1)

Feldman, M.

E. C. Tam, S. Zhou, M. Feldman, “Spatial light modulator-based electro-optical imaging system,”Appl. Opt. (to be published).

Gregory, D. A.

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

Hashimoto, N.

N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

Juday, R.

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

Kitamura, K.

N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

Konforti, N.

Lu, K.

K. Lu, B. E. A. Saleh, Opt. Eng. 29, 240 (1990).
[CrossRef]

Marom, E.

Morokawa, S.

N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

Saleh, B. E. A.

K. Lu, B. E. A. Saleh, Opt. Eng. 29, 240 (1990).
[CrossRef]

Tam, E. C.

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

E. C. Tam, S. Zhou, M. Feldman, “Spatial light modulator-based electro-optical imaging system,”Appl. Opt. (to be published).

Tanone, A.

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

Wu, S. T.

Yu, E T. S.

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

Zhou, S.

E. C. Tam, S. Zhou, M. Feldman, “Spatial light modulator-based electro-optical imaging system,”Appl. Opt. (to be published).

Opt. Eng. (2)

E. C. Tam, E T. S. Yu, A. Tanone, D. A. Gregory, R. Juday, Opt. Eng. 29, 1114 (1990).
[CrossRef]

K. Lu, B. E. A. Saleh, Opt. Eng. 29, 240 (1990).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. Hashimoto, S. Morokawa, K. Kitamura, Proc. Soc. Photo-Opt. Instrum. Eng. 1461, 291 (1991).

Other (1)

E. C. Tam, S. Zhou, M. Feldman, “Spatial light modulator-based electro-optical imaging system,”Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Architecture of the lens system.

Fig. 2
Fig. 2

Effective focal length fe versus f2L for different values of d. Both femax and femin are plotted.

Fig. 3
Fig. 3

Focal length of the front lens/SLM unit as functions of f2L.

Fig. 4
Fig. 4

Required values for (a) f2SLM and (b) f1SLM as functions of the object distance at different fe values.

Fig. 5
Fig. 5

Required values for (a) f2SLM and (b) f1SLM as functions of fe at different object distances so.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x ) = ( x 2 k ) / ( 2 f ) ,
f = ( Δ x D ) / λ ,
1 / f e = 1 / f 1 + 1 / f 2 d / ( f 1 f 2 ) .
s i = f 2 d [ ( f 1 f 2 s o ) / ( s o f 1 ) ] d f 2 [ ( f 1 s o ) / ( s o f 1 ) ] .
( 1 / f i L + 1 / f i SLMmin ) 1 f i ( 1 / f i L 1 / γ i SLMmin ) 1 , i = 1 , 2 ,
< f i ( 1 / f i L 1 / γ i SLMmin ) 1 , ( 1 / f i L + 1 / f i SLMmin ) 1 f i L < , i = 1 , 2 ,
m = f 1 s i d s o d f 1 s 0 f 1 = d s i d f 2 s i f 2 f 2 s o .
s i = f 2 d f 1 f 2 d f 2 f 1 .
f e = s i + d ( s i d ) / f 2 .
Δ f e = f e max f e min = s i d ( 1 / f 2 min 1 / f 2 max ) = ( 2 s i d ) / f 2 SLMmin .
Δ f e = ( 2 d 2 ) / f 2 SLMmin .

Metrics