Abstract

We present a method for removing the conjugate image in an incoherent-light holographic technique, namely, on-axis conoscopic holography. The point-spread function that we obtain is that of a complex Gabor zone pattern, which thus should allow good-quality reconstructions of objects. Experimental results are also presented, which confirm the validity of this method.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Y. Sirat, D. Psaltis, Opt. Lett. 10, 4 (1985).
    [Crossref] [PubMed]
  2. D. Charlot, Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris, 1987).
  3. G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).
  4. G. Y. Sirat, J. Opt. Soc. Am. A 9, 70, 84 (1992).
    [Crossref]
  5. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).
  6. G. Y. Sirat, D. Psaltis, Opt. Commun. 65, 243 (1988).
    [Crossref]
  7. E. Dufresne, P. Chavel, G. Y. Sirat, French patent89-05344 (April21, 1989).
  8. N. Streibl, Optik 66, 341 (1984).
  9. D. N. Sitter, W. T. Rhodes, Appl. Opt. 29, 26 (1990).
  10. D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

1992 (1)

1990 (2)

D. N. Sitter, W. T. Rhodes, Appl. Opt. 29, 26 (1990).

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

1988 (1)

G. Y. Sirat, D. Psaltis, Opt. Commun. 65, 243 (1988).
[Crossref]

1985 (1)

1984 (1)

N. Streibl, Optik 66, 341 (1984).

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Charlot, D.

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

D. Charlot, Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris, 1987).

G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).

Chavel, P.

E. Dufresne, P. Chavel, G. Y. Sirat, French patent89-05344 (April21, 1989).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Dufresne, E.

E. Dufresne, P. Chavel, G. Y. Sirat, French patent89-05344 (April21, 1989).

G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Maruani, A.

G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).

Mugnier, L. M.

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

Psaltis, D.

G. Y. Sirat, D. Psaltis, Opt. Commun. 65, 243 (1988).
[Crossref]

G. Y. Sirat, D. Psaltis, Opt. Lett. 10, 4 (1985).
[Crossref] [PubMed]

Rhodes, W. T.

D. N. Sitter, W. T. Rhodes, Appl. Opt. 29, 26 (1990).

Sirat, G. Y.

G. Y. Sirat, J. Opt. Soc. Am. A 9, 70, 84 (1992).
[Crossref]

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

G. Y. Sirat, D. Psaltis, Opt. Commun. 65, 243 (1988).
[Crossref]

G. Y. Sirat, D. Psaltis, Opt. Lett. 10, 4 (1985).
[Crossref] [PubMed]

G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).

E. Dufresne, P. Chavel, G. Y. Sirat, French patent89-05344 (April21, 1989).

Sitter, D. N.

D. N. Sitter, W. T. Rhodes, Appl. Opt. 29, 26 (1990).

Streibl, N.

N. Streibl, Optik 66, 341 (1984).

Appl. Opt. (1)

D. N. Sitter, W. T. Rhodes, Appl. Opt. 29, 26 (1990).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

G. Y. Sirat, D. Psaltis, Opt. Commun. 65, 243 (1988).
[Crossref]

Opt. Lett. (1)

Optik (1)

N. Streibl, Optik 66, 341 (1984).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

D. Charlot, L. M. Mugnier, G. Y. Sirat, Proc. Soc. Photo-Opt. Instrum. Eng. 1265, 52 (1990).

Other (4)

D. Charlot, Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, Paris, 1987).

G. Y. Sirat, E. Dufresne, D. Charlot, A. Maruani, French patent88-17225 (December27, 1988).

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

E. Dufresne, P. Chavel, G. Y. Sirat, French patent89-05344 (April21, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic setup. A uniaxial crystal (C) is sandwiched between two circular polarizers (P1, P2). A point source (S) illuminates the system, and a Gabor zone pattern is observed at the output.

Fig. 2
Fig. 2

Principle of the modified setup. The input polarizer is now linear and makes an angle ϕ0 with axis X. A mask is added to this polarizer to modify the impulse response and is integral with it.

Fig. 3
Fig. 3

Mask is put in the front focal plane of the system. X′ and Y′ are the axes of the LCLV. The circular polarizer and the LCLV (when set to a one- or three-quarter wave) give a linear polarizer whose axis ϕ0 is at ±45° with X′.

Fig. 4
Fig. 4

Experimental setup showing the acquisition of the impulse response of the system.

Fig. 5
Fig. 5

(a), (b) Experimental results: integrated snapshots with the different PSF’s giving (a) the real part Hc and (b) the imaginary part HS of the ideal PSF He. Numerically calculated (c) modulus and (d) phase of the experimental PSE

Tables (1)

Tables Icon

Table 1 Different PSF Values, after Integration of the Snapshots, as Functions of the LCLV Delaya

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H c + ( x , y ) = 1 2 { 1 + cos [ π f r ( x 2 + y 2 ) ] } ,
H c ( x , y ) = 1 2 { 1 cos [ π f r ( x 2 + y 2 ) ] } ,
H c = H c + H c = cos [ π f r ( x 2 + y 2 ) ] ,
H e ( x , y ) = exp [ i π f r ( x 2 + y 2 ) ] .
H ( x , y ) = 1 2 { 1 + sin [ 2 ( θ ϕ 0 ) ] sin [ π f r ( x 2 + y 2 ) ] } ,
H ( x , y ) = m ( θ ) sin [ 2 ( θ ϕ 0 ) ] sin [ π f r ( x 2 + y 2 ) ] .
m ( θ ) = 1 for sin [ 2 ( θ ϕ 0 ) ] > 0 ; m ( θ ) = 0 elsewhere .
H S ( x , y ) = ( 1 / π ) [ 0 2 π m ( θ ) sin ( 2 θ ) d θ ] × sin [ π f r ( x 2 + y 2 ) ] , H S ( x , y ) = ( 2 / π ) sin [ π f r ( x 2 + y 2 ) ] .

Metrics