Abstract

We find strong self-defocusing in bacteriorhodopsin films in the near IR with powers in the tens of milliwatts. The defocused beam acquires a ring pattern because of spatial self-phase modulation. We also demonstrate efficient four-wave mixing with phase-conjugate reflectivities of 26%. We discuss the origin of this high nonlinearity.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ottolenghi, Adv. Photochem. 12, 97 (1980).
    [CrossRef]
  2. A. Lewis, V. Del Priore, Phys. Today 41, 38 (1988).
    [CrossRef]
  3. Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).
  4. D. Haronian, A. Lewis, Appl. Opt. 30, 597 (1991).
    [CrossRef] [PubMed]
  5. N. Hampp, C. Brauchle, D. Oesterhelt, Biophys. J. 58, 83 (1990).
    [CrossRef] [PubMed]
  6. E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
    [CrossRef]
  7. O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
    [CrossRef] [PubMed]
  8. S. D. Durbin, S. M. Arkalian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
    [PubMed]
  9. L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
    [CrossRef]
  10. R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978).
    [CrossRef] [PubMed]
  11. H. Eichler, G. Enterlein, P. Glozbach, H. Stahl, Appl. Opt. 11, 372 (1972).
    [CrossRef] [PubMed]

1991 (1)

1990 (2)

1988 (1)

A. Lewis, V. Del Priore, Phys. Today 41, 38 (1988).
[CrossRef]

1987 (1)

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
[CrossRef]

1986 (1)

L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
[CrossRef]

1981 (1)

1980 (1)

M. Ottolenghi, Adv. Photochem. 12, 97 (1980).
[CrossRef]

1978 (1)

1972 (1)

Abrams, R. L.

Arkalian, S. M.

Brauchle, C.

N. Hampp, C. Brauchle, D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Chen, Z.

Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).

Del Priore, V.

A. Lewis, V. Del Priore, Phys. Today 41, 38 (1988).
[CrossRef]

Durbin, S. D.

Eichler, H.

Enterlein, G.

Fischer, B.

Glozbach, P.

Hampp, N.

N. Hampp, C. Brauchle, D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Haronian, D.

Huignard, J. P.

L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
[CrossRef]

Korchemskaya, E. Y.

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
[CrossRef]

Lewis, A.

D. Haronian, A. Lewis, Appl. Opt. 30, 597 (1991).
[CrossRef] [PubMed]

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
[CrossRef] [PubMed]

A. Lewis, V. Del Priore, Phys. Today 41, 38 (1988).
[CrossRef]

Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).

Lind, R. C.

Maurin, J.

L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
[CrossRef]

Nebenzahl, I.

O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, Opt. Lett. 15, 1117 (1990).
[CrossRef] [PubMed]

Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).

Oesterhelt, D.

N. Hampp, C. Brauchle, D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Ottolenghi, M.

M. Ottolenghi, Adv. Photochem. 12, 97 (1980).
[CrossRef]

Richard, L.

L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
[CrossRef]

Shen, Y. R.

Soskin, M. S.

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
[CrossRef]

Stahl, H.

Takei, H.

Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).

Taranenko, V. B.

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
[CrossRef]

Werner, O.

Adv. Photochem. (1)

M. Ottolenghi, Adv. Photochem. 12, 97 (1980).
[CrossRef]

Appl. Opt. (2)

Biophys. J. (1)

N. Hampp, C. Brauchle, D. Oesterhelt, Biophys. J. 58, 83 (1990).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Richard, J. Maurin, J. P. Huignard, Opt. Commun. 57, 365 (1986).
[CrossRef]

Opt. Lett. (3)

Phys. Today (1)

A. Lewis, V. Del Priore, Phys. Today 41, 38 (1988).
[CrossRef]

Sov. J. Quantum Electron. (1)

E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, Sov. J. Quantum Electron. 17, 450 (1987).
[CrossRef]

Other (1)

Z. Chen, A. Lewis, H. Takei, I. Nebenzahl, “Application of bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Far-field output from the BR–PVA film for low light intensities. (b) Far-field output from the BR–PVA sample for higher intensities, which shows the self-defocusing with the ring patterns. Here the laser beam had a power of 21.5 mW and a wavelength of 700 nm. It was focused on the sample with a lens of 100-mm focal length.

Fig. 2
Fig. 2

Experimental setup for the phase conjugation experiment. The pump beam intensities I1 and I2 are 10.8 and 5.1 W/cm2, respectively, and the probe intensity I4 is 0.24 W/cm2. The beam spot size in the sample is ~1 mm, the wavelength is λ ≈ 700 nm, and the polarization is in the plane of incidence.

Fig. 3
Fig. 3

Phase-conjugate reflectivity (vertical axis) versus the angle (in degrees) θ between the probe and the pump beams inside the sample.

Fig. 4
Fig. 4

Experimental setup for measurements on the self-diffracted beam 3. The wavelength is λ ≈ 700 nm, the BR sample thickness is 450 μm, beam 1 is the pump, beam 2 is the probe, beam 3 is the self-diffracted beam, and PD is a photodetector.

Fig. 5
Fig. 5

Intensity of the first-order diffracted beam 3 (in the two-wave mixing experiment of Fig. 4, with a wavelength of 770 nm) as a function of the intensity Ib of an additional illumination with a wavelength of (a) 442 nm, (b) 632.8 nm, and (c) 632.8 and 442 nm simultane-ously, where Ib was the varied 442-nm intensity and the 632.8-nm intensity was held constant (354 mW/cm2). The vertical scale (intensity of 73) for (a) and (b) is given at the left side and for (c) at the right side. All beam cross sections were approximately 1 mm2, and the angle between the two writing beams was 1.3° in air. The input intensities I1 and I2 were (a) 11.5 and 2.8 W/cm2, (b) 23 and 5.6 W/cm2, and (c) 17.2 and 4.2 W/cm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = | γ | 2 sin 2 w L ( α 3 sin w L + w cos w L ) 2 ,
| γ | 2 = [ k 0 2 cos θ 3 ( a sin 2 θ 2 + a cos 2 θ 2 ) ] 2 I 1 I 2 × exp ( 2 α 1 L ) ,

Metrics