Abstract

Numerical solutions of the Fresnel diffraction integral with various apodizing filter functions are used to indicate that a so-called nondiffracting beam can be produced that maintains a constant spot size and constant axial intensity over a considerable range, approximately 30 m in our example.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  2. J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  3. A. Vasara, J. Turunen, A. T. Friberg, J. Opt. Soc. Am. A 6, 1748 (1989).
    [CrossRef] [PubMed]
  4. A. J. Cox, D. C. Dibble, Appl. Opt. 30, 1330 (1991).
    [CrossRef] [PubMed]
  5. G. Indebetouw, J. Opt. Soc. Am. A 6, 150 (1989).
    [CrossRef]
  6. A. J. Cox, D. C. Dibble, J. Opt. Soc. Am. A 9, 282 (1992).
    [CrossRef]
  7. P. L. Overfelt, C. S. Kenney, J. Opt. Soc. Am. A 8, 732 (1991).
    [CrossRef]
  8. R. M. Herman, T. A. Wiggins, J. Opt. Soc. Am. A 8, 932 (1991).
    [CrossRef]
  9. F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987).
    [CrossRef]

1992

1991

1989

1987

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Cox, A. J.

Dibble, D. C.

Durnin, J.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Eberly, J. H.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Friberg, A. T.

Gori, F.

F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

Guattari, G.

F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

Herman, R. M.

Indebetouw, G.

Kenney, C. S.

Miceli, J. J.

J. Durnin, J. J. Miceli, J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Overfelt, P. L.

Padovani, C.

F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

Turunen, J.

Vasara, A.

Wiggins, T. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated (a) axial intensity versus z and (b) transverse intensity versus radial distance ρ at z0 = 25 m for a J0(βρ) beam transmitted through a clear aperture [T(r) = 1] of 50-mm radius at z = 0.

Fig. 2
Fig. 2

Calculated axial intensities versus z for T(r) = exp(−r/w0)2 for (a) T(R) = 0.1 and (b) T(R) = 0.01.

Fig. 3
Fig. 3

Calculated axial intensities versus z for t(r) chosen to be Gaussian with (a) = 0.7 and (b) = 0.9.

Fig. 4
Fig. 4

Calculated axial intensities versus z for t(r) chosen to be a cosine function as described in the text with (a) = 0.7 and (b) = 0.9; and (c) calculated transverse intensity versus radial distance ρ with the same t(r) for = 0.7 at z0 = 25 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( ρ ) = A J 0 ( β ρ ) .
E ( z , ρ ) = A ( i k / z ) exp { i [ k z + k ρ 2 / ( 2 z ) ] } × 0 R T ( r ) J 0 ( β r ) exp [ i k r 2 / ( 2 z ) ] J 0 ( k r ρ / z ) r d r ,
T ( r ) = { 1 0 r R t ( r ) R r R ,

Metrics