Abstract

It is shown theoretically and experimentally that a phase-conjugate mirror can be used to compensate for intrasignal photorefractive coupling as well as modal phase dispersion and linear intermodal coupling in a photorefractive fiber. A holographic image stored in a LiNbO3 fiber (at a spatial resolution of 5 line pairs/mm, which is close to the theoretical limit) is successfully reconstructed by compensating for the above factors.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hesselink, S. Refield, Opt. Lett. 13, 877 (1988).
    [Crossref] [PubMed]
  2. L. Hesselink, Int. J. Optoelectron. 5, 103 (1990).
  3. H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
    [Crossref]
  4. B. Fisher, M. Segev, Appl. Phys. Lett. 54, 684 (1989).
    [Crossref]
  5. A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
    [Crossref]
  6. G. J. Dunning, R. C. Lind, Opt. Lett. 7, 558 (1982).
    [Crossref] [PubMed]
  7. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, B. Shu, Opt. Lett. 13, 1020 (1988).
    [Crossref] [PubMed]
  8. N. A. Vainos, M. C. Gower, Opt. Lett. 16, 363 (1991).
    [Crossref] [PubMed]
  9. M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
    [Crossref]
  10. C. Gu, P. Yeh, Opt. Lett. 16, 455 (1991).
    [Crossref] [PubMed]
  11. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [Crossref] [PubMed]
  12. Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
    [Crossref]

1991 (2)

1990 (2)

L. Hesselink, Int. J. Optoelectron. 5, 103 (1990).

H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
[Crossref]

1989 (2)

B. Fisher, M. Segev, Appl. Phys. Lett. 54, 684 (1989).
[Crossref]

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

1988 (2)

1984 (1)

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

1982 (2)

1976 (1)

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Dunning, G. J.

Feinberg, J.

Fisher, B.

B. Fisher, M. Segev, Appl. Phys. Lett. 54, 684 (1989).
[Crossref]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Gower, M. C.

Gu, C.

Hesselink, L.

L. Hesselink, Int. J. Optoelectron. 5, 103 (1990).

L. Hesselink, S. Refield, Opt. Lett. 13, 877 (1988).
[Crossref] [PubMed]

Kitayama, K.

H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
[Crossref]

Kyuma, K.

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

Lind, R. C.

Liu, L.

Ma, J.

Oguri, H.

H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
[Crossref]

Refield, S.

Segev, M.

B. Fisher, M. Segev, Appl. Phys. Lett. 54, 684 (1989).
[Crossref]

Shu, B.

Sze-Keung Kwong, N.

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

Tomita, Y.

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

Vainos, N. A.

Wang, Z.

White, J. O.

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Wu, S.

Xu, L.

Yahalom, R.

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

Yariv, A.

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

Yeh, P.

Yoshinaga, H.

H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
[Crossref]

Appl. Phys. Lett. (3)

H. Yoshinaga, K. Kitayama, H. Oguri, Appl. Phys. Lett. 56, 1782 (1990).
[Crossref]

B. Fisher, M. Segev, Appl. Phys. Lett. 54, 684 (1989).
[Crossref]

A. Yariv, Appl. Phys. Lett. 28, 88 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Tomita, R. Yahalom, K. Kyuma, A. Yariv, N. Sze-Keung Kwong, IEEE J. Quantum Electron. 25, 315 (1989).
[Crossref]

IEEE. J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fisher, J. O. White, A. Yariv, IEEE. J. Quantum Electron. QE-20, 12 (1984).
[Crossref]

Int. J. Optoelectron. (1)

L. Hesselink, Int. J. Optoelectron. 5, 103 (1990).

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of recording with a photorefractive crystal fiber. The object beam consists of several plane waves propagating in different directions.

Fig. 2
Fig. 2

Experimental setup for compensation of intrasignal photorefractive coupling.

Fig. 3
Fig. 3

Experimental results that show the compensation of intrasignal photorefractive coupling.

Fig. 4
Fig. 4

Experimental setup to investigate the resolution of the reconstructed image.

Fig. 5
Fig. 5

Resolution test chart (a) directly reconstructed and (b) reconstructed through phase conjugation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d A 1 d z = γ 12 I 0 ( A 1 A 2 * + B 1 * B 2 ) A 2 γ 1 r I 0 ( A 1 A r * + B 1 * B r ) A r α A 1 ,
d A 2 * d z = γ 12 I 0 ( A 1 A 2 * + B 1 * B 2 ) A 1 * γ 2 r * I 0 ( A 2 * A r + B 2 B r * ) A r * α A 2 * ,
d B 1 * d z = γ 12 I 0 ( A 1 A 2 * + B 1 * B 2 ) B 2 * γ 1 r I 0 ( A 1 A r * + B 1 * B r ) B r * + α B 1 * ,
d B 2 d z = γ 12 I 0 ( A 1 A 2 * + B 1 * B 2 ) B 1 γ 2 r * I 0 ( A 2 * A r + B 2 B r * ) B r + α B 2 ,
d d z ( A 1 B 2 * A 2 B 1 * ) = F ( z ) ( A 1 B 2 * A 2 B 1 * ) ,
F ( z ) = γ I 0 ( | A r | 2 + | B r | 2 ) .
A 1 B 2 * A 2 B 1 * = C exp [ F ( z ) d z ] ,
A 1 A 2 = B 1 * B 2 *

Metrics