Abstract

The principle of incoherent-to-coherent conversion is demonstrated in several photorefractive oxide crystals using a self-pumped phase-conjugator geometry. Resolution in excess of 30 line pairs/mm has been obtained for writing beams of a few milliwatts of power. The combined read/write function for a single frame showed a time response of approximately 140 ms at an intensity of 1 W/cm2 for the crystals used in these demonstrations.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).
  2. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
    [CrossRef] [PubMed]
  3. M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, T. R. O’Meara, Opt. Lett. 11, 575 (1986).
    [CrossRef] [PubMed]
  4. E. Voit, P. Günter, Opt. Lett. 12, 769 (1987); P. Amrhein, P. Günter, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1991), p. 324.
    [CrossRef] [PubMed]
  5. J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.
  6. R. Grousson, S. Mallick, Appl. Opt. 19, 1762 (1980).
    [CrossRef] [PubMed]
  7. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, Opt. Lett. 14, 572 (1989).
    [CrossRef] [PubMed]
  8. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [CrossRef] [PubMed]
  9. The depth of focus using the laser beam for selective erasure is large because a small region of the imaging lenses L1 is utilized. However, when a white-light source is used a much larger fraction of the imaging lens is used and the depth of focus is greatly reduced.
  10. G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.
  11. A. Marrakchi, Opt. Lett. 13, 654 (1988).
    [CrossRef] [PubMed]

1989 (1)

1988 (1)

1987 (1)

1986 (1)

1983 (1)

1982 (1)

1980 (2)

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

R. Grousson, S. Mallick, Appl. Opt. 19, 1762 (1980).
[CrossRef] [PubMed]

Clark, W. W.

G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.

Dunning, G. J.

Feinberg, J.

Grousson, R.

Günter, P.

Johnson, R. V.

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

Kamshilin, A. A.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Klein, M. B.

Lind, R. C.

Liu, L.

Ma, J.

Mallick, S.

Marrakchi, A.

A. Marrakchi, Opt. Lett. 13, 654 (1988).
[CrossRef] [PubMed]

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

O’Meara, T. R.

Petrov, M. P.

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Psaltis, D.

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

Salamo, G. J.

G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.

Sharp, E. J.

G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.

Shi, Y.

Tanguay, A. R.

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, Appl. Opt. 22, 3665 (1983).
[CrossRef] [PubMed]

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

Valley, G. C.

Voit, E.

Wang, Z.

Wood, G. L.

G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.

Wu, S.

Xu, L.

Yu, J.

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

Appl. Opt. (2)

Opt. Lett. (5)

Sov. Tech. Phys. Lett. (1)

A. A. Kamshilin, M. P. Petrov, Sov. Tech. Phys. Lett. 6, 144 (1980).

Other (3)

J. Yu, D. Psaltis, A. Marrakchi, A. R. Tanguay, R. V. Johnson, in Photorefractive Materials and Their Applications II, P. Günter, J. P. Huignard, eds., Vol. 61 of Springer Series on Topics in Applied Physics (Springer-Verlag, Berlin, 1988), p. 275.

The depth of focus using the laser beam for selective erasure is large because a small region of the imaging lenses L1 is utilized. However, when a white-light source is used a much larger fraction of the imaging lens is used and the depth of focus is greatly reduced.

G. L. Wood, W. W. Clark, E. J. Sharp, G. J. Salamo, in Digest of Conference on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D.C., 1991), p. 408.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement used to demonstrate the principle of incoherent-to-coherent conversion in a self-pumped phase conjugator. PR’s, polarization rotators; BX, beam expander; T, binary transparency; BS, beam splitter; A, 1-mm-diameter aperture; M’s, mirrors. The incoherent white-light source is a xenon lamp.

Fig. 2
Fig. 2

Effect on the phase-conjugate signal as a result of translating the writing beam along the c axis of the crystal while self-pumping is taking place, (a) Image of the uniform conjugate beam; (b) image of the conjugate beam with a 1-mm spot erased; (c) image of the conjugate beam with the erased spot near the center of the signal; (d) image of the conjugate signal magnified by a reimaging lens to show the details of the reconstructed hologram.

Fig. 3
Fig. 3

Results obtained using a He–Cd laser for writing and a 514-nm argon-ion laser to produce the phase conjugate. (a) Incoherent input image, (b) coherent output image. The resolution for these images is 28 line pairs/mm.

Fig. 4
Fig. 4

Results of incoherent-to-coherent conversion using a white-light writing source, (a) Coherent output image with 28 line pairs/mm, (b) output image with 30–40 line pairs/mm.

Fig. 5
Fig. 5

The 1/e2 time response for writing versus the writing-beam intensity for a 442-nm He–Cd writing laser and a 26-mW/cm2 argon-ion recording laser at 514 nm. The writing beam had a 1/e2 diameter of ~1 mm, and the recording beam had a 1/e2 diameter of ~4 mm.

Metrics