Abstract

The measured beam quality of a typical argon-ion laser that uses a stable resonator is found to be slightly greater than unity for small intracavity aperture sizes, approaching M2 ≈ 1 as the mode-control aperture diameter is increased. Above a critical aperture size, the beam quality suddenly deteriorates, however, rising toward M2 ≈ 2 for larger apertures, although it is difficult to detect the onset of this deterioration from observations of either the laser output power or the output beam profile. Computer simulations confirm that the sudden rise in the M2 factor is due to the onset of a higher-order donut mode that oscillates simultaneously with the fundamental TEM00 mode. This general behavior is characteristic of other types of stable-cavity gas laser as well.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Forbes, Lasers Optron. (April1990), p. 51.
  2. L. Marshall, Laser Focus 4(4), 26 (1971).
  3. M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.
  4. A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).
  5. T. F. Johnston, Laser Focus World 26, 173 (1990).
  6. A. E. Siegman, IEEE J. Quantum Electron. 27, 1146 (1991).
    [Crossref]
  7. J. Klein, O. Märten, Fraunhofer-Institut für Lasertechnik, Aachen, Germany (personal communication).
  8. paraxia™ software package for the Macintosh computer, available from Software Distribution Center, Office of Technology Licensing, MC 6225, Stanford University, Stanford, Calif. 94305-6225.
  9. J.-l. Doumont, “Laser beam and resonator calculations on desktop computers,” Ph.D. dissertation (Department of Applied Physics, Stanford University, 1991).
  10. O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

1991 (1)

A. E. Siegman, IEEE J. Quantum Electron. 27, 1146 (1991).
[Crossref]

1990 (2)

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

T. F. Johnston, Laser Focus World 26, 173 (1990).

1971 (1)

L. Marshall, Laser Focus 4(4), 26 (1971).

Alzer, P.

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Doumont, J.-l.

J.-l. Doumont, “Laser beam and resonator calculations on desktop computers,” Ph.D. dissertation (Department of Applied Physics, Stanford University, 1991).

Forbes, M.

M. Forbes, Lasers Optron. (April1990), p. 51.

Franek, J.

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Johnston, T. F.

T. F. Johnston, Laser Focus World 26, 173 (1990).

Klein, J.

J. Klein, O. Märten, Fraunhofer-Institut für Lasertechnik, Aachen, Germany (personal communication).

Loosen, P.

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Marshall, L.

L. Marshall, Laser Focus 4(4), 26 (1971).

Märten, O.

J. Klein, O. Märten, Fraunhofer-Institut für Lasertechnik, Aachen, Germany (personal communication).

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Niessen, M.

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Sasnett, M. W.

M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.

Siegman, A. E.

A. E. Siegman, IEEE J. Quantum Electron. 27, 1146 (1991).
[Crossref]

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

Sturm, V.

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE J. Quantum Electron. 27, 1146 (1991).
[Crossref]

Laser Focus (1)

L. Marshall, Laser Focus 4(4), 26 (1971).

Laser Focus World (1)

T. F. Johnston, Laser Focus World 26, 173 (1990).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

Other (6)

M. Forbes, Lasers Optron. (April1990), p. 51.

M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.

J. Klein, O. Märten, Fraunhofer-Institut für Lasertechnik, Aachen, Germany (personal communication).

paraxia™ software package for the Macintosh computer, available from Software Distribution Center, Office of Technology Licensing, MC 6225, Stanford University, Stanford, Calif. 94305-6225.

J.-l. Doumont, “Laser beam and resonator calculations on desktop computers,” Ph.D. dissertation (Department of Applied Physics, Stanford University, 1991).

O. Märten, V. Sturm, J. Franek, P. Alzer, M. Niessen, P. Loosen, in Proceedings of Conference on Lasers and Optoelectronics, W. Waidelich, ed. (Springer-Verlag, Berlin, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured values of total output power and beam-quality factor versus intracavity mode-control aperture index (which is roughly proportional to aperture size) for three different operating currents in a typical commercial argon-ion laser. The power output scale is in watts, and the diameter of the intracavity aperture increases linearly in steps of 0.05 mm from 2.55 mm for the first aperture to 3.25 mm for the aperture with an index number of 15.

Fig. 2
Fig. 2

Calculated output power (in normalized units) and calculated output beam quality versus mode-control aperture size obtained from a numerical simulation assuming a stable laser cavity with two circulating waves and a thin homogeneously saturable gain sheet having a parabolic unsaturated gain profile at one end of the laser cavity.

Fig. 3
Fig. 3

Data similar to Fig. 3 but assuming a Gaussian unsaturated gain profile instead.

Fig. 4
Fig. 4

Converged total intensity profiles (incoherent superposition of two transverse modes) for the calculated output beam at four different points in the data of Fig. 3.

Metrics