Abstract

Improved pumping geometries and tailored cavity modes result in a 32% optical-to-optical slope efficiency for TEM00 output from a transversely diode-pumped Nd:YAG laser. Energies of 60 mJ are obtained for multimode operation and 50 mJ for single-mode operation, which represent an 80% extraction of the multimode energy as TEM00 output. The electrical slope efficiency for TEM00 operation is 17%.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Sipes, Appl. Phys. Lett. 47, 74 (1985).
    [Crossref]
  2. W. Koechner, in Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988).
  3. D. C. Shannon, R. W Wallace, Opt. Lett. 16, 318 (1991).
    [Crossref] [PubMed]
  4. W. Skrlac, H. Kortz, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper EL1.2.
  5. G. J. Kintz, T. Baer, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper ELT3.5.
  6. T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
    [Crossref]
  7. F. Hanson, D. Haddock, Appl. Opt. 27, 80 (1988).
    [Crossref] [PubMed]
  8. R. Burnham, A. D. Hays, Opt. Lett. 14, 27 (1989).
    [Crossref] [PubMed]
  9. D. C. Gerstenberger, A. Drobshoff, R. W. Wallace, Opt. Lett. 15, 124 (1990).
    [Crossref] [PubMed]
  10. A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.
  11. L. R. Marshall, J. Kaskinski, A. D. Hays, R. Burnham, Opt. Lett. 16, 681 (1991).
    [Crossref] [PubMed]

1991 (2)

1990 (1)

1989 (1)

1988 (2)

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[Crossref]

F. Hanson, D. Haddock, Appl. Opt. 27, 80 (1988).
[Crossref] [PubMed]

1985 (1)

D. L. Sipes, Appl. Phys. Lett. 47, 74 (1985).
[Crossref]

Baer, T.

G. J. Kintz, T. Baer, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper ELT3.5.

Boers, M. S.

A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.

Brown, A. J.

A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.

Burnham, R.

Byer, R. L.

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[Crossref]

Drobshoff, A.

Fan, T. Y.

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[Crossref]

Fisher, C. H.

A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.

Gerstenberger, D. C.

Haddock, D.

Hanson, F.

Hays, A. D.

Kangas, K. W.

A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.

Kaskinski, J.

Kintz, G. J.

G. J. Kintz, T. Baer, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper ELT3.5.

Koechner, W.

W. Koechner, in Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988).

Kortz, H.

W. Skrlac, H. Kortz, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper EL1.2.

Marshall, L. R.

Shannon, D. C.

Sipes, D. L.

D. L. Sipes, Appl. Phys. Lett. 47, 74 (1985).
[Crossref]

Skrlac, W.

W. Skrlac, H. Kortz, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper EL1.2.

Wallace, R. W

Wallace, R. W.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. L. Sipes, Appl. Phys. Lett. 47, 74 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988).
[Crossref]

Opt. Lett. (4)

Other (4)

W. Koechner, in Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988).

A. J. Brown, M. S. Boers, K. W. Kangas, C. H. Fisher, in Digest of Conference on Advanced Solid State Lasers (Optical Society of America, Washington, D.C., 1991), p. 316.

W. Skrlac, H. Kortz, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper EL1.2.

G. J. Kintz, T. Baer, in Proceedings of 1988 LEOS Annual Meeting (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1988), paper ELT3.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated gain profile showing normalized intensity contours.

Fig. 2
Fig. 2

Measured spatial profile of a multimode output beam obtained from a side-pumped laser rod when a flat-flat cavity is employed. In this case the cavity mode matches itself to the gain volume, thus this figure is representative of the gain profile within the laser rod.

Fig. 3
Fig. 3

Cavity configuration employed to give a Z-ray path through the gain volume. The cavity consisted of four mirrors, a 50-cm radius-of-curvature concave high reflector M1 at 1.06 μm, a 50% output coupler M2, and two half-coated high reflectors M3. The TEM00 cavity mode is shown by a series of lines, and the cross section of the gain volume is indicated as a blackened region.

Fig. 4
Fig. 4

Cavity configuration employed to obtain an elliptical mode within the laser rod by cutting the rod faces at Brewster’s angle. The TEM00 mode for the hemispherical cavity is outlined.

Fig. 5
Fig. 5

Output energy at 1.06 μm obtained for each configuration investigated as a function of diode pump energy at 807 nm. Note the significant improvement in the TEM00 output when the three-pass or Brewster rod configurations are employed.

Fig. 6
Fig. 6

Average single-mode 1.06-μm output power at 20-Hz repetition rate versus the average electrical input power to the laser diodes. The diodes employed for the Brewster rod had a higher electrical slope efficiency, which resulted in greater slope efficiency for the laser.

Tables (1)

Tables Icon

Table 1 Results Obtained in Our Study

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η TEM 00 = E TEM 00 E mm = + d x + g ( x , y ) m ( x , y ) d y + d x + g 2 ( x , y ) d y ,
η TEM 00 = 2 { [ 1 + ( x 0 w 0 ) 2 ] [ 1 + ( y 0 w 0 ) 2 ] } 1 / 2 for w 0 ( x 0 , y 0 ) max ,
η TEM 00 = 2 { 2 [ 1 + ( w i w 0 ) 2 ] } 1 / 2 for w 0 > w x , where w i = w y , or w 0 > w y , where w i = w x ,

Metrics