Abstract

We demonstrate that steerable, two-dimensional, single-mode optical waveguides can be formed in defocusing media by exciting dark spatial solitons.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Luther-Davies, X. Yang, Opt. Lett. 17, 496 (1992).
    [CrossRef] [PubMed]
  2. A. Stentz, M. Kauranen, J. Maki, G. Agarwal, R. Boyd, Opt. Lett. 17, 19 (1992).
    [CrossRef] [PubMed]
  3. R. De La Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).
    [CrossRef] [PubMed]
  4. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
    [CrossRef] [PubMed]
  5. A. Hasagawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
    [CrossRef]
  6. W. J. Tomlinson, J. Opt. Soc. Am. B 6, 329 (1989).
    [CrossRef]
  7. S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
    [CrossRef]
  8. See, for example, H. Kogelik, in Guided Wave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988), p. 52.
  9. Ref. 8, p. 14.
  10. B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.
  11. G. A. Swartzlander, Opt. Lett. 17, 493 (1992).
    [CrossRef] [PubMed]

1992 (3)

1991 (3)

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

R. De La Fuente, A. Barthelemy, C. Froehly, Opt. Lett. 16, 793 (1991).
[CrossRef] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

1989 (1)

1973 (1)

A. Hasagawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Agarwal, G.

Allen, G. R.

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Andersen, D. R.

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Barthelemy, A.

Boyd, R.

De La Fuente, R.

Froehly, C.

Hasagawa, A.

A. Hasagawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Kauranen, M.

Kogelik, H.

See, for example, H. Kogelik, in Guided Wave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988), p. 52.

Luther-Davies, B.

B. Luther-Davies, X. Yang, Opt. Lett. 17, 496 (1992).
[CrossRef] [PubMed]

B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.

Maki, J.

Mitchell, D. J.

B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Skinner, S. R.

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Smirl, A. L.

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

Snyder, A. W.

B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.

Stentz, A.

Swartzlander, G. A.

G. A. Swartzlander, Opt. Lett. 17, 493 (1992).
[CrossRef] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Tappert, F.

A. Hasagawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

Tomlinson, W. J.

Yang, X.

B. Luther-Davies, X. Yang, Opt. Lett. 17, 496 (1992).
[CrossRef] [PubMed]

B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Hasagawa, F. Tappert, Appl. Phys. Lett. 23, 171 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. R. Skinner, G. R. Allen, D. R. Andersen, A. L. Smirl, IEEE J. Quantum Electron. 27, 2211 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, A. E. Kaplan, Phys. Rev. Lett. 66, 1583 (1991).
[CrossRef] [PubMed]

Other (3)

See, for example, H. Kogelik, in Guided Wave Optoelectronics, T. Tamir, ed., Vol. 26 of Springer Series in Electronics and Photonics (Springer-Verlag, Berlin, 1988), p. 52.

Ref. 8, p. 14.

B. Luther-Davies, X. Yang, A. W. Snyder, D. J. Mitchell, in Nonlinear Optics: Materials, Fundamentals, and Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 303–305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Angle that the soliton makes with respect to the z direction plotted as a function of the phase difference between the fields on either side of the soliton.

Fig. 2
Fig. 2

Demonstration of scanning of a guided beam by steering a soliton in a thermal nonlinear medium. The position of the guided beam as a function of the phase change between the waves on either side of the soliton was assembled into a gray-scale plot. The image represents a region 750 μm across at the output of a 10-cm-long cell.

Fig. 3
Fig. 3

(a) Simulations of multiple soliton formation from a single input beam containing three phase jumps (0.65π, π, −0.65π) are illustrated with a gray-scale plot representing the field intensity as a function of propagation distance through the medium, (b), (c), and (d) show similar plots of propagation of the guided beams launched separately into the soliton-induced waveguides parallel to the k vector of the soliton-forming beam. In this simulation Δnmax = 0.008, the propagation distance was 1000λ, and the width of the window in the transverse direction was 65 λ.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u ( x , z ) = u 0 [ 1 B 2 sech 2 ( ξ ) ] 1 / 2 exp [ ± i ϕ ( ξ ) ] ,
ϕ ( ξ ) = sin 1 { B tanh ( ξ ) / [ 1 B 2 sech 2 ( ξ ) ] 1 / 2 } ,
ξ = κ ( x x 0 v z ) ,
κ = ( n 0 | n 2 | k 0 2 B 2 u 0 2 ) 1 / 2 ,
Δ s ( FWHM ) = 1.76 / κ ,
v = ± ( 1 B 2 ) 1 / 2 ( | n 2 | u 0 2 / n 0 ) 1 / 2 ,
θ s = tan 1 { ± [ 1 sin 2 ( ϕ s / 2 ) ] 1 / 2 ( Δ n max / n 0 ) 1 / 2 } ,

Metrics