Abstract

The occurrence of semileaky waves in dielectric chirowaveguides is investigated. It is shown that a thin-film dielectric chiroslabguide with an achiral superstrate and in which both the film and substrate are chiral can support semileaky modes radiating energy into the substrate, provided that the chirality parameters are properly chosen.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tamir, ed., Integrated Optics (Springer-Verlag, New York, 1979), Chap. 3.
  2. K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
    [CrossRef]
  3. S. K. Sheem, W. K. Burns, A. F. Milton, Opt. Lett. 3, 76 (1978).
    [CrossRef] [PubMed]
  4. J. Čtyroký, M. Čada, Opt. Commun. 27, 353 (1978).
    [CrossRef]
  5. D. Marcuse, I. P. Kaminov, IEEE J. Quantum Electron. QE-15, 92 (1979).
    [CrossRef]
  6. M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
    [CrossRef]
  7. A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
    [CrossRef]
  8. L. Torner, F. Canal, J. H. Marco, Appl. Opt. 29, 2805 (1990).
    [CrossRef] [PubMed]
  9. N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
    [CrossRef] [PubMed]
  10. J. A. M. Svedin, IEEE Trans. Microwave Theory Tech. 38, 1488 (1990).
    [CrossRef]
  11. H. Cory, I. Rosenhouse, IEE Proc. H 138, 90 (1991).
  12. C. R. Paiva, A. M. Barbosa, Electromagnetics 11, 209 (1991).
    [CrossRef]
  13. M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).
  14. N. Engheta, P. Pelet, Opt. Lett. 16, 723 (1991).
    [CrossRef] [PubMed]
  15. C. R. Paiva, A. M. Barbosa, IEEE Trans. Microwave Theory Tech. 40, 672 (1992).
    [CrossRef]
  16. M. P. Carpentier, A. F. dos Santos, J. Comput. Phys. 45, 210 (1982).
    [CrossRef]

1992 (1)

C. R. Paiva, A. M. Barbosa, IEEE Trans. Microwave Theory Tech. 40, 672 (1992).
[CrossRef]

1991 (4)

N. Engheta, P. Pelet, Opt. Lett. 16, 723 (1991).
[CrossRef] [PubMed]

H. Cory, I. Rosenhouse, IEE Proc. H 138, 90 (1991).

C. R. Paiva, A. M. Barbosa, Electromagnetics 11, 209 (1991).
[CrossRef]

M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).

1990 (2)

L. Torner, F. Canal, J. H. Marco, Appl. Opt. 29, 2805 (1990).
[CrossRef] [PubMed]

J. A. M. Svedin, IEEE Trans. Microwave Theory Tech. 38, 1488 (1990).
[CrossRef]

1989 (1)

1988 (1)

A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
[CrossRef]

1985 (1)

M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
[CrossRef]

1982 (1)

M. P. Carpentier, A. F. dos Santos, J. Comput. Phys. 45, 210 (1982).
[CrossRef]

1979 (1)

D. Marcuse, I. P. Kaminov, IEEE J. Quantum Electron. QE-15, 92 (1979).
[CrossRef]

1978 (3)

J. Čtyroký, M. Čada, Opt. Commun. 27, 353 (1978).
[CrossRef]

K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
[CrossRef]

S. K. Sheem, W. K. Burns, A. F. Milton, Opt. Lett. 3, 76 (1978).
[CrossRef] [PubMed]

Barbosa, A. M.

C. R. Paiva, A. M. Barbosa, IEEE Trans. Microwave Theory Tech. 40, 672 (1992).
[CrossRef]

C. R. Paiva, A. M. Barbosa, Electromagnetics 11, 209 (1991).
[CrossRef]

Burns, W. K.

Cada, M.

J. Čtyroký, M. Čada, Opt. Commun. 27, 353 (1978).
[CrossRef]

Canal, F.

Carpentier, M. P.

M. P. Carpentier, A. F. dos Santos, J. Comput. Phys. 45, 210 (1982).
[CrossRef]

Cory, H.

H. Cory, I. Rosenhouse, IEE Proc. H 138, 90 (1991).

Ctyroký, J.

J. Čtyroký, M. Čada, Opt. Commun. 27, 353 (1978).
[CrossRef]

dos Santos, A. F.

M. P. Carpentier, A. F. dos Santos, J. Comput. Phys. 45, 210 (1982).
[CrossRef]

Engheta, N.

Gaylord, T. K.

A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
[CrossRef]

Kaminov, I. P.

D. Marcuse, I. P. Kaminov, IEEE J. Quantum Electron. QE-15, 92 (1979).
[CrossRef]

Kamiya, T.

K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
[CrossRef]

Knoesen, A.

A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
[CrossRef]

Koivisto, P. K.

M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).

Koshiba, M.

M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
[CrossRef]

Kumagami, H.

M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
[CrossRef]

Lindell, I. V.

M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).

Marco, J. H.

Marcuse, D.

D. Marcuse, I. P. Kaminov, IEEE J. Quantum Electron. QE-15, 92 (1979).
[CrossRef]

Milton, A. F.

Moharam, M. G.

A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
[CrossRef]

Oksanen, M.

M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).

Paiva, C. R.

C. R. Paiva, A. M. Barbosa, IEEE Trans. Microwave Theory Tech. 40, 672 (1992).
[CrossRef]

C. R. Paiva, A. M. Barbosa, Electromagnetics 11, 209 (1991).
[CrossRef]

Pelet, P.

Rosenhouse, I.

H. Cory, I. Rosenhouse, IEE Proc. H 138, 90 (1991).

Sheem, S. K.

Shibayama, K.

K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
[CrossRef]

Suzuki, M.

M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
[CrossRef]

Svedin, J. A. M.

J. A. M. Svedin, IEEE Trans. Microwave Theory Tech. 38, 1488 (1990).
[CrossRef]

Torner, L.

Yamanouchi, K.

K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
[CrossRef]

Appl. Opt. (1)

Electromagnetics (1)

C. R. Paiva, A. M. Barbosa, Electromagnetics 11, 209 (1991).
[CrossRef]

IEE Proc. H (2)

M. Oksanen, P. K. Koivisto, I. V. Lindell, IEE Proc. H 138, 327 (1991).

H. Cory, I. Rosenhouse, IEE Proc. H 138, 90 (1991).

IEEE J. Lightwave Technol. (2)

M. Koshiba, H. Kumagami, M. Suzuki, IEEE J. Lightwave Technol. LT-3, 773 (1985).
[CrossRef]

A. Knoesen, T. K. Gaylord, M. G. Moharam, IEEE J. Lightwave Technol. 6, 1083 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, I. P. Kaminov, IEEE J. Quantum Electron. QE-15, 92 (1979).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

J. A. M. Svedin, IEEE Trans. Microwave Theory Tech. 38, 1488 (1990).
[CrossRef]

K. Yamanouchi, T. Kamiya, K. Shibayama, IEEE Trans. Microwave Theory Tech. MTT-26, 298 (1978).
[CrossRef]

C. R. Paiva, A. M. Barbosa, IEEE Trans. Microwave Theory Tech. 40, 672 (1992).
[CrossRef]

J. Comput. Phys. (1)

M. P. Carpentier, A. F. dos Santos, J. Comput. Phys. 45, 210 (1982).
[CrossRef]

Opt. Commun. (1)

J. Čtyroký, M. Čada, Opt. Commun. 27, 353 (1978).
[CrossRef]

Opt. Lett. (3)

Other (1)

T. Tamir, ed., Integrated Optics (Springer-Verlag, New York, 1979), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Thin-film dielectric chirowaveguide with thickness t. Both the film, characterized by (1, μ1, χ1) and the substrate, characterized by (2, μ2, χ2), are chiral. The superstrate is an isotropic medium characterized by (d, μd). It is assumed that 1μ1 > 2μ2 > dμd and χ1 = χ2 = χ.

Fig. 2
Fig. 2

β versus χ for the chiroslabguide depicted in Fig. 1 with t = 0.1λ; 1 = 4, 2 = 3, and μ1 = μ2 = 1. The superstrate is the air: d = μd = 1. Modes a and b are always surface modes, whereas mode c (mode d) is a semileaky mode for χ > χc (χ > χd). The solid lines correspond to surface waves, and the dashed lines correspond to semileaky waves. The dotted lines correspond to auxiliary curves, β = β± and β = γ±.

Fig. 3
Fig. 3

α versus χ for the semileaky modes c and d of Fig. 2; χc and χd are the transition values for the occurrence of the two semileaky modes, c and d, respectively.

Fig. 4
Fig. 4

Loci of the improper complex σ+ transverse wave numbers as functions of χ for the two semileaky modes (c and d) of Figs. 2 and 3.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

D = 0 ( E j χ Z 0 H ) ,
B = μ 0 ( μ H + j χ Y 0 E ) ,
β ± = 1 μ 1 ± χ ,
γ ± = 2 μ 2 ± χ ,
h ± 2 = β ± 2 n eff 2 ,
σ ± 2 = γ ± 2 n eff 2 ,
E s ( x ) = E s + ( x ) + E s ( x ) ,
H s ( x ) = j y s Y 0 [ E s + ( x ) E s ( x ) ] ,
E y ± = A ± sin ( h ± x ) + β ± cos ( h ± x ) ,
E y ± = C ± exp ( j σ ± x ) .
E y = A 0 exp [ j h d ( x t ) ] ,
H y = B 0 exp [ j h d ( x t ) ] .
[ η + η ν + ν ξ + ξ ζ + ζ h + β h β + R + R y 1 h + β y 1 h β + y 2 S + y 2 S ] [ A + A B + B ] = [ 0 0 0 0 ] ,
η ± = d cos ( h ± t ) h ± β + j h d y 1 Δ 1 sin ( h ± t ) ,
ν ± = d sin ( h ± t ) h ± β j h d y 1 Δ 1 cos ( h ± t ) ,
ξ ± = μ d y 1 cos ( h ± t ) h ± β + j h d Δ 1 sin ( h ± t ) ,
ζ ± = μ d y 1 sin ( h ± t ) h ± β j h d Δ 1 cos ( h ± t ) ,
R ± = j Δ 1 2 Δ 2 × [ ( 1 ± y 1 y 2 ) σ + γ ( 1 y 1 y 2 ) σ γ + ] ,
S ± = j Δ 1 2 Δ 2 × [ ( 1 ± y 1 y 2 ) σ + γ + ( 1 y 1 y 2 ) σ γ + ] .

Metrics