Abstract

A frequency-modulated continuous-wave technique is used to detect phases of backscattered signals in a single-mode fiber. A distributed interferometric sensor system employing this technique is presented, and interrogation of 28 sensing regions is demonstrated. Spatial resolution 0.7 m and a sensitivity of 3 mradHz are achieved.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, J. Dakin, eds., Optical Fiber Sensors: Systems and Applications (Artech House, Dedham, Mass., 1989), Vol. 2.
  2. A. Hartog, M. Gold, IEEE J. Lightwave Technol. LT-2, 76 (1984).
  3. W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).
  4. S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).
  5. A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).
  6. R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).
  7. A. D. Kersey, K. L. Dorsey, A. Dandridge, Opt. Lett. 14, 93 (1989).

1990 (1)

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

1989 (1)

1987 (1)

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

1984 (1)

A. Hartog, M. Gold, IEEE J. Lightwave Technol. LT-2, 76 (1984).

1981 (1)

W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).

Dandridge, A.

Dorsey, K. L.

Eickhoff, W.

W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).

Gold, M.

A. Hartog, M. Gold, IEEE J. Lightwave Technol. LT-2, 76 (1984).

Gulyaev, A. Yu.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

Hartog, A.

A. Hartog, M. Gold, IEEE J. Lightwave Technol. LT-2, 76 (1984).

Juškaitis, R.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).

Kersey, A. D.

Kitaev, S. M.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

Kozel, S. M.

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

Listvin, V. N.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

Potapov, V.

R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).

Potapov, V. T.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

Sedykh, D.

R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).

Sedykh, D. A.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

Shatalin, S.

R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).

Shatalin, S. V.

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

Ulrich, R.

W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).

Appl. Phys. Lett. (1)

W. Eickhoff, R. Ulrich, Appl. Phys. Lett. 39, 693 (1981).

IEEE J. Lightwave Technol. (1)

A. Hartog, M. Gold, IEEE J. Lightwave Technol. LT-2, 76 (1984).

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

A. Yu. Gulyaev, S. M. Kitaev, V. N. Listvin, V. T. Potapov, D. A. Sedykh, S. V. Shatalin, R. Juškaitis, Sov. J. Quantum Electron. 20, 876 (1990).

Sov. Tech. Phys. Lett. (1)

S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. Juškaitis, Sov. Tech. Phys. Lett. 13, 172 (1987).

Other (2)

B. Culshaw, J. Dakin, eds., Optical Fiber Sensors: Systems and Applications (Artech House, Dedham, Mass., 1989), Vol. 2.

R. Juškaitis, V. Potapov, D. Sedykh, S. Shatalin, “Fibre-optic sensors using the FMCW technique and intracavity detection,” Int. J. Optoelectron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. BPF's, bandpass filters.

Fig. 2
Fig. 2

Spectrum of the photodetector signal where 1 kHz corresponds to 1 m: (a) ϕm = 0, (b) ϕm = 0.3 rad, z0 = 10 m (note frequency scale change).

Fig. 3
Fig. 3

Oscilloscope traces of (a) the perturbation signal and (b) the phase detector output.

Fig. 4
Fig. 4

Spatial resolution of the distributed sensor.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 0 L r ( z ) exp { 2 i [ β ( ω ) z + φ m Θ ( z z 0 ) sin Ω m t ] } d z ,
G ( Ω ) = G ( 0 , Ω ) i φ m [ G ( z 0 , Ω Ω m ) G ( z 0 , Ω + Ω m ) ] ,
G ( z 0 , Ω ) comb ( Ω Ω T ) z 0 L r ( z ) × exp [ 2 i β ( ω 0 ) z ] sinc ( Ω T 2 Δ ω z υ ) d z

Metrics