Abstract

A combination of amplitude modulation and filtering in a fiber ring, whose loss is compensated by gain, can maintain indefinitely ones represented by solitons and zeros represented by their absence. The spontaneous emission noise of the amplifiers is contained if the system parameters are chosen properly.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
    [CrossRef]
  2. M. Nakazawa, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 315.
  3. H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. (to be published).
  4. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  5. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
    [CrossRef] [PubMed]
  6. Y. Kodama, A. Hasegawa, Opt. Lett. 17, 31 (1992).
    [CrossRef] [PubMed]
  7. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  8. L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
    [CrossRef]
  9. A. Hasegawa, Y. Kodama, Phys. Rev. Lett. 66, 161 (1991).
    [CrossRef] [PubMed]
  10. K. J. Blow, N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
    [CrossRef]
  11. H. A. Haus, Y. Lai, J. Opt. Soc. Am. B 7, 387 (1990).
    [CrossRef]

1992 (1)

1991 (6)

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[CrossRef]

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

A. Hasegawa, Y. Kodama, Phys. Rev. Lett. 66, 161 (1991).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
[CrossRef] [PubMed]

1990 (1)

H. A. Haus, Y. Lai, J. Opt. Soc. Am. B 7, 387 (1990).
[CrossRef]

1986 (1)

Blow, K. J.

K. J. Blow, N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

Doran, N. J.

K. J. Blow, N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

Fujimoto, J. G.

Gordon, J. P.

Hasegawa, A.

Haus, H. A.

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[CrossRef]

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
[CrossRef] [PubMed]

H. A. Haus, Y. Lai, J. Opt. Soc. Am. B 7, 387 (1990).
[CrossRef]

J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
[CrossRef] [PubMed]

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. (to be published).

Ippen, E. P.

Kodama, Y.

Kubota, H.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Lai, Y.

Mecozzi, A.

A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
[CrossRef] [PubMed]

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. (to be published).

Mollenauer, L. F.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

Moores, J. D.

Nakazawa, M.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

M. Nakazawa, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 315.

Suzuki, K.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, E. Yamada, H. Kubota, K. Suzuki, Electron. Lett. 27, 1270 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (1)

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, IEEE J. Lightwave Technol. 9, 194 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. J. Blow, N. J. Doran, IEEE Photon. Technol. Lett. 3, 369 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

A. Hasegawa, Y. Kodama, Phys. Rev. Lett. 66, 161 (1991).
[CrossRef] [PubMed]

Other (2)

M. Nakazawa, in Conference on Lasers and Electro-Optics, Vol. 12 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 315.

H. A. Haus, A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Stability region for zeros and ones in a soliton storage ring. β″ should be interpreted as being positive.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

a z = 1 Ω f 2 l 2 t 2 a 1 2 j β 2 a t 2 + ( g Γ ) a j δ | a | 2 a M ( 1 cos Ω m t ) a + n ( z , t ) .
z Δ p ( z ) = 4 3 1 Ω f 2 l 1 τ 2 Δ p ( z ) + S p ( z ) ,
z Δ t ( z ) = τ 2 π 2 6 M Ω m 2 Δ t ( z ) + | β | Δ p ( z ) + S t ( z ) .
a z = ( 1 Ω f 2 l 1 2 j β ) 2 a t 2 + ( g Γ ) a M ( 1 cos Ω m t ) a + n ( z , t ) .
( 1 Ω f 2 l 1 2 j β ) 2 a t 2 M ( 1 cos Ω m t ) a = E a .
a = n c n ( z ) y n ( t ) .
c n z = [ ( g Γ ) + E n ] c n + n n ( z ) ,
n n ( z ) = y ¯ n * ( t ) n ( z , t ) d t .
M ( 1 cos Ω m t ) 1 2 M Ω m 2 t 2 ,
y 0 ( t ) = exp t 2 2 τ 0 2 ,
1 τ 0 2 = [ M 2 Ω m 2 ( 1 Ω f 2 l j β ) ] 1 / 2 ,
E 0 = [ M 2 Ω m 2 ( 1 Ω f 2 l 1 2 j β ) ] 1 / 2 = ( M 2 Ω m 2 ) 1 / 2 [ ( 1 Ω f 2 l ) 2 + ( β 2 ) 2 ] 1 / 4 × exp ( j ϕ ) ,
ϕ = tan 1 ( β Ω f 2 l / 2 ) .
g Γ Re [ M 2 Ω m 2 ( 1 Ω f 2 l 1 2 j β ) ] 1 / 2 < 0.
z W = 2 ( g Γ π 2 24 M Ω m 2 τ 2 1 3 1 l Ω f 2 τ 2 ) W ,
W = | a 0 | 2 d t = 2 A 0 2 τ
a 0 ( t ) = A 0  sech ( t / τ ) .
τ = 2 | β | δ W .
g Γ = π 2 24 M Ω m 2 τ 2 + 1 3 1 l Ω f 2 τ 2 .
π 2 24 M Ω m τ 2 + 1 3 1 l Ω f 2 τ 2 < Re [ M 2 Ω m 2 ( 1 Ω f 2 l 1 2 j β ) ] 1 / 2 .
z Δ W = 4 ( π 2 24 M Ω m 2 τ 2 1 3 1 l Ω f 2 τ 2 ) Δ W ,
π 2 24 M Ω m 2 τ 2 1 3 1 l Ω f 2 τ 2 < 0.

Metrics