Abstract

The switching characteristic of a nonlinear-optical loop mirror can be inverted by a birefringent bias element. The device reflectance is insensitive to polarization in the linear regime for arbitrary birefringence in the loop. Under certain conditions, birefringence leads to polarization sensitivity in the nonlinear regime, which is likely to be contributing to instabilities that have been observed recently in mode-locked fiber lasers.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
    [CrossRef]
  2. B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).
  3. I. N. Duling, Electron. Lett. 27, 544 (1991).
    [CrossRef]
  4. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.
  5. D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1991).
    [CrossRef]
  6. H. G. Winful, Opt. Lett. 11, 33 (1986).
    [CrossRef] [PubMed]

1991 (3)

B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1991).
[CrossRef]

1990 (1)

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

1986 (1)

Blow, K. J.

B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Doran, N. J.

B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Duling, I. N.

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Mortimore, D. B.

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1991).
[CrossRef]

Nayar, B. K.

B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).

Nelson, B. P.

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Winful, H. G.

Electron. Lett. (2)

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

IEEE J. Lightwave Technol. (1)

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1991).
[CrossRef]

Opt. Comput. Process. (1)

B. K. Nayar, K. J. Blow, N. J. Doran, Opt. Comput. Process. 1, 81 (1991).

Opt. Lett. (1)

Other (1)

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, in Nonlinear Guided-Wave Phenomena, Vol. 15 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper MC1-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the NOLM.

Fig. 2
Fig. 2

Linear response of the NOLM as a function of the orientation and phase delay of the birefringent bias element. Two different routes that can be used to bias the device are indicated by arrows. Route 1: ϕd fixed at 180°, θp varies to change reflectance. Route 2: θp fixed as 45°, ϕd varies to change reflectance.

Fig. 3
Fig. 3

Nonlinear response of the NOLM, which shows switch inversion and polarization sensitivity. Five different linear bias settings are considered with reflectance–transmittance ratios as indicated. At each setting, both power and input polarization are varied to generate a manifold of response curves. Solid curves denote proportion of reflected power. Dashed curves denote proportion of transmitted power, (a) Theoretical results, with θp set at 45° to the plane of the loop (route 2 conditions), (b) Experimental results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = 4 α ( 1 α ) ( cos 4 θ p + sin 4 θ p + 2 cos 2 θ p sin 2 θ p cos ϕ d ) .
R = 2 α ( 1 α ) [ 1 + cos ( 4 θ p ) cos ( Δ ϕ NL ) ] ,
R = 2 α ( 1 α ) ( 1 + cos ϕ d cos Δ ϕ NL + sin 2 ϕ sin ϕ d sin Δ ϕ NL ) ,

Metrics