Abstract

We report the beam-coupling properties of a cobalt-doped oxygen-reduced n-type barium titanate crystal in the 0° and 45° crystallographic orientations. Oxygen reduction improved the response time of the 0°-cut crystal by a factor of ~4.5 without diminishing the beam-coupling gain. The 45°-cut crystal has a peak gain of ~38.7 cm−1, a response time of ~21 ms, and a photorefractive sensitivity of 3.44 cm3/kJ. We infer from response time measurements an equivalent percentage change in the dc dielectric constant and the mobility with respect to crystallographic orientation.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription