Abstract

We report a simple technique to determine whether the nonlinear mechanism that dominates the results of a z-scan n2 measurement is slower than the duration of the exciting pulse. In this technique, the temporal waveform of the beam transmitted through an aperture is observed, instead of total energy per pulse as in a normal z-scan measurement. Using a doubled Nd:YAG laser, we observed a slow response in index change in the absorptive material methyl nitroaniline, whereas CS2 showed fast response compared with the laser pulse width of 65 ns.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
    [Crossref] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [Crossref]
  3. P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), p. 211.

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

1989 (1)

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Prasad, P. N.

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), p. 211.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
[Crossref] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, E. W. Van Stryland, Opt. Lett. 14, 955 (1989).
[Crossref] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Williams, D. J.

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), p. 211.

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[Crossref]

Opt. Lett. (1)

Other (1)

P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991), p. 211.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical z-scan data for CS2. The transmitted beam energy is measured as the sample is scanned along the z axis. The peak intensity of the focused beam was 225 MW/cm2. The beam is incident from the left. The sample positions z1 and z2 are used in the modified z-scan experiment.

Fig. 2
Fig. 2

Schematic view of the optical configuration. The temporal waveform of the beam transmitted through the aperture is observed when the sample is fixed at z1 and z2. z1 and z2 represent the sample positions at which the transmission shows extrema in z-scan measurement.

Fig. 3
Fig. 3

Temporal waveforms of a beam transmitted through an aperture, where the sample and the peak intensity are (a) CS2, 90 MW/cm2 and (b) MNA, 22 MW/cm2. The curves are labeled z1 and z2 to indicate the position of the samples. Note that the relative positions of the z1 and z2 curves differ in the two cases since the sign of the non-linearity is positive for CS2 and negative for MNA.

Metrics