Abstract

We demonstrate Kerr lens mode locking of a diode-pumped Nd:YAG laser by using the gain medium as the Kerr medium and no intracavity slit. Kerr self-focusing within the Nd:YAG rod is believed to improve matching between the cavity mode and the aperture created by thermal lens aberration and thereby discriminate against lower (cw) intensities. The laser produces 8.5-ps, 100-MHz pulses with 1 W of average output power and a 35% slope efficiency. Kerr lens mode locking is initiated by slight mechanical perturbation.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [Crossref] [PubMed]
  2. D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.
  3. F. Salin, J. Squier, M. Piché, Opt. Lett. 16, 1674 (1991).
    [Crossref] [PubMed]
  4. G. Gabetta, D. Huang, J. Jacobson, M. Ramaswamy, E. P. Ippen, J. G. Fujimoto, Opt. Lett. 16, 1756 (1991).
    [Crossref] [PubMed]
  5. G. P. A. Malcolm, A. I. Ferguson, Opt. Lett. 16, 1967 (1991).
    [Crossref] [PubMed]
  6. U. Keller, G. W. 'tHooft, W. H. Knox, J. E. Cunningham, Opt. Lett. 16, 1022 (1991).
    [Crossref] [PubMed]
  7. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [Crossref] [PubMed]
  8. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin1988).
  9. S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
    [Crossref]
  10. J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
    [Crossref]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  12. R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
    [Crossref]
  13. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, J. G. Fujimoto, Opt. Lett. 17, 511 (1992).
    [Crossref] [PubMed]

1992 (3)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
[Crossref]

D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, J. G. Fujimoto, Opt. Lett. 17, 511 (1992).
[Crossref] [PubMed]

1991 (5)

1989 (1)

R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
[Crossref]

1985 (1)

Acioli, L. H.

Adair, R.

R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
[Crossref]

Albers, P.

J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
[Crossref]

Bowers, M. S.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

Byer, R. L.

Chase, L. L.

R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
[Crossref]

Cousins, A. K.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

Cunningham, J. E.

Dixon, G. J.

Ferguson, A. I.

Feuget, G.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Frauchiger, J.

J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
[Crossref]

Fujimoto, J. G.

Gabetta, G.

Goldblatt, N.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Haus, H. A.

Huang, D.

Ippen, E. P.

Jacobson, J.

Kane, T. J.

Kean, P. N.

Keller, U.

Knox, W. H.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin1988).

Malcolm, G. P. A.

Negus, D. K.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Payne, S. A.

R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
[Crossref]

Piché, M.

Ramaswamy, M.

Salin, F.

Seamans, J. F.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Spence, D. E.

Spinelli, L.

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

Squier, J.

'tHooft, G. W.

Tidwell, S. C.

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

Ulman, M.

Weber, H. P.

J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
[Crossref]

Zhou, B.

IEEE J. Quantum Electron. (2)

S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, IEEE J. Quantum Electron. 28, 997 (1992).
[Crossref]

J. Frauchiger, P. Albers, H. P. Weber, IEEE J. Quantum Electron. 28, 1046 (1992).
[Crossref]

Opt. Lett. (7)

Phys. Rev. B (1)

R. Adair, L. L. Chase, S. A. Payne, Phys. Rev. B 39, 3337 (1989).
[Crossref]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, Berlin1988).

D. K. Negus, L. Spinelli, N. Goldblatt, G. Feuget, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1991), paper PDP4.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the KLM diode-pumped Nd:YAG laser.

Fig. 2
Fig. 2

Background-free, 13.1-ps FWHM autocorrelation trace of the KLM pulse train. The pulse duration is 8.5 ps assuming a sech2 pulse shape.

Fig. 3
Fig. 3

Calculated single-pass phase shift for a thermal lens and two different thin lenses. The thermal lens is based on a divergence-free, Gaussian pump beam with a beam waist wpump = 75 μm and a total heat generation of 1W.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f = w 2 4 n 2 I 0 L ,
d T d w = 4 R 2 w 3 exp ( 2 R 2 / w 2 ) .

Metrics