Abstract

We show that the gain gradient introduced when a solid-state laser is pumped with a Gaussian beam can be used to obtain large Gaussian modes from unstable resonators. Extremely high efficiencies and high-quality beams have been obtained by using gain guiding in an unstable Ti:Al2O3 laser.

© 1992 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  2. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 788–791.
  3. N. McCarthy, P. Lavigne, Opt. Lett. 10, 553 (1985).
    [CrossRef] [PubMed]
  4. H. Kogelnik, Appl. Opt. 4, 1562 (1965).
    [CrossRef]
  5. L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
    [CrossRef]
  6. L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
    [CrossRef] [PubMed]
  7. A. Hardy, Appl. Opt. 19, 3830 (1980).
    [CrossRef] [PubMed]
  8. J. Squier, G. Mourou, D. Harter, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1992), paper MF3.
  9. F. Estable, E. Mottay, B. M. Industries, Evry, France (personal communication, 1992).

1985 (1)

1980 (1)

1972 (1)

1968 (1)

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

1965 (1)

1961 (1)

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Casperson, L. W.

L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
[CrossRef] [PubMed]

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Estable, F.

F. Estable, E. Mottay, B. M. Industries, Evry, France (personal communication, 1992).

Fox, A. G.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Hardy, A.

Harter, D.

J. Squier, G. Mourou, D. Harter, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1992), paper MF3.

Kogelnik, H.

Lavigne, P.

Li, T.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

McCarthy, N.

Mottay, E.

F. Estable, E. Mottay, B. M. Industries, Evry, France (personal communication, 1992).

Mourou, G.

J. Squier, G. Mourou, D. Harter, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1992), paper MF3.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 788–791.

Squier, J.

J. Squier, G. Mourou, D. Harter, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1992), paper MF3.

Yariv, A.

L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
[CrossRef] [PubMed]

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Bell Syst. Tech. J. (1)

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Opt. Lett. (1)

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 788–791.

J. Squier, G. Mourou, D. Harter, in Digest of Conference on Advanced Solid-State Lasers (Optical Society of America, Washington, D.C., 1992), paper MF3.

F. Estable, E. Mottay, B. M. Industries, Evry, France (personal communication, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Evolution of the beam size in an unstable cavity with gain guiding. Mirror M1 is flat, and mirror M2 has a radius of curvature R = −3 m. The gain is supposed to have a Gaussian shape with a radius wp = 2 mm and a small-signal gain g0 = 1.

Fig. 2
Fig. 2

Experimental profile of the beam produced by a flat–flat cavity with gain guiding. The gain medium is Ti:A12O3, and the output energy is 25 mJ/pulse at 20 Hz.

Fig. 3
Fig. 3

Theoretical beam profiles obtained from a beam-propagation model including diffraction for different gain profiles. Curve a, Gaussian pump profile; curve b, super-Gaussian (n = 4); curve c, super-Gaussian (n = 10); curve d, flat gain. The gain-profile diameter at 1/e is 2 mm, and a 6-mm-diameter hard aperture is included in the cavity. The resonator consists in two flat mirrors 40 cm apart, and the beam profile is calculated 20 cm from the gain medium.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g ( x ) = g 0 2 exp ( 2 x 2 w p 2 ) ,
g ( x ) = g 0 2 ( 1 2 x 2 w p 2 ) .
k ( x ) = 2 π λ 0 [ n 0 i λ 0 2 π α ( x ) ] ,
[ cos γ L 1 n 0 γ sin γ L n 0 γ sin γ L cos γ L ] ,
n 0 γ = λ 0 2 π 2 k x 2 | x = 0 .
Z R = π w p 2 λ ,
[ 1 L / n 0 i λ 0 π g 0 w p 2 1 ] .
w g = w p g 0 .
w L 2 = w p 2 λ 0 d π g 0 .

Metrics